
Test suite minimization for mutation testing of
WS-BPEL compositions

Francisco Palomo-Lozano
Escuela Superior de Ingeniería

University of Cádiz
Puerto Real, Spain

francisco.palomo@uca.es

Antonia Estero-Botaro
Escuela Superior de Ingeniería

University of Cádiz
Puerto Real, Spain

antonia.estero@uca.es

Inmaculada Medina-Bulo
Escuela Superior de Ingeniería

University of Cádiz
Puerto Real, Spain

inmaculada.medina@uca.es

Manuel Núñez
Faculty of Computer Science

Complutense University of Madrid
Madrid, Spain
mn@sip.ucm.es

ABSTRACT
This paper presents an exact search-based technique to mini-
mize test suites while maintaining their mutation coverage.
The minimization of test suites is a hard problem whose solu-
tion is important both to reduce the cost of mutation testing
and to precisely assess the quality of existing test suites. This
problem can be addressed with Search-Based Software En-
gineering (SBSE) techniques, including metaheuristics and
exact techniques. We have applied Integer Linear Program-
ming (ILP) as an exact technique to reduce the effort of
testing with very promising results. Our technique can be
adapted to different formalisms but this paper focuses on test-
ing WS-BPEL compositions, as it poses several interesting
problems. Despite the fact that web service compositions are
relatively small, as they just orchestrate web services, their
execution can be very expensive because the deployment and
execution of web services, and the underlying infrastructure,
are not trivial. Therefore, although test suites for the compo-
sitions themselves are also usually small, it is fundamental
to reduce, as much as possible and without losing coverage,
their size.

CCS CONCEPTS
• Software and its engineering → Search-based soft-
ware engineering; Software testing and debugging ; Orches-
tration languages; • Theory of computation → Linear
programming ;

KEYWORDS
SBSE, WS-BPEL, web service compositions, mutation test-
ing, test suite minimization, exact techniques, ILP
ACM Reference Format:
Francisco Palomo-Lozano, Antonia Estero-Botaro, Inmaculada
Medina-Bulo, and Manuel Núñez. 2018. Test suite minimization
for mutation testing of
WS-BPEL compositions. In GECCO ’18: Genetic and Evolution-
ary Computation Conference, July 15–19, 2018, Kyoto, Japan.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3205455.3205533

1 INTRODUCTION
Software testing represents a major part of the development
effort that in some projects can raise up to 40% of the total
development cost even assuming a conservative estimate.
Therefore, it is necessary to carefully select which test cases
to execute, or in which order they should be executed, to
detect potential errors with the least possible cost [46]. There
exist two situations where the execution cost of tests is very
high, though for different reasons.

In the first situation, and this is the most common scenario,
there is a vast number of test cases, which are likely to come
from legacy test suites that have been evolving and growing
throughout different versions of the system under test (SUT).
Thus, the accumulated cost of maintaining and executing
these test suites, particularly for regression testing, can be
very high. There is another situation, maybe not so common
but even more challenging, where the associated costs can be
also very high. It happens when the test suites are relatively
small but they exercise a large number of features of the
SUT, what might imply a high overall cost too.

The latter situation is exactly the case with mutation
testing as every mutant, which is a potentially faulty variant
of the SUT, is executed against each test case in the test suite
in an attempt to kill the mutant [22]. The number of mutants
is usually large. Moreover, this situation is also prevalent
in the development of web service compositions [40]. These
compositions combine services that are tested apart or whose
testing is not among the responsibilities of the organization

https://doi.org/10.1145/3205455.3205533
https://doi.org/10.1145/3205455.3205533
https://doi.org/10.1145/3205455.3205533

developing or maintaining the composition. In fact, several
web services conforming the same functional specification1

may be available. Services can be automatically discovered
and it might be the case that the service to be executed is
dynamically selected or even hot-swapped at a given moment,
depending on certain conditions.

In summary, web services should be seen as black boxes
where requests are formulated and results are returned in
exchange. The goal of the test team primarily consists in
designing effective test cases for the web service composition
itself. It usually happens that the number of test cases is
not high, at least, in comparison with the number of test
cases needed to test the underlying services. However, their
execution cost is generally very high: in particular, it includes
the execution costs of the services involved. The situation
worsens in the presence of mutation testing, as a large number
of mutants has to be considered.

Nevertheless, the elimination of test cases cannot be prop-
erly addressed without incorporating metrics to assess the
effectiveness of the selected test cases. As there is not just one
possible criterion to choose these metrics [10] and different
criteria may even represent conflicting goals, the context has
to be clearly specified.

In this work we present an approach to the minimization
of test suites based on mutation coverage [22, 35] for WS-
BPEL compositions. WS-BPEL is an OASIS standard for
web service compositions [29]. We use exact techniques based
on Integer Linear Programming (ILP) [23]. The problem is
reduced to the minimization of a linear function with binary
decision variables and linear constraints. Decision variables
represent which test cases are selected and constraints ensure
that mutation coverage does not decrease.

This paper is, to the best of our knowledge, the first work
providing test-suite minimization for web service composi-
tions and the first time that an exact technique is used to
minimize test suites in the context of mutation testing. Be-
sides, it builds the individual execution costs of test cases
into the model instead of assuming, as usual, that they are
executed at unit cost. Finally, it preserves mutation coverage,
which is important in the light of recent results [6]: exactly
the same mutants are killed by the resulting test suite.

The structure of the rest of the paper is as follows. Sec-
tion 2 contains a discussion of related work. Then, a minimal
background on mutation testing of web service compositions
is provided in Section 3. Afterwards, Section 4 introduces the
minimization problem in this context and the techniques used
to solve it. Next, Section 5 contains a description of the exper-
iments conducted and discusses the results obtained. Threats
to validity are presented in Section 6. Finally, conclusions
and future work follow in Section 7.

2 RELATED WORK
There is a vast literature on metaheuristic techniques for
solving the test-suite minimization problem and other related

1Usually these alternative services present different non-functional
features (e.g. run-time or quality of service).

problems. The interested reader is referred to the extensive
survey by Yoo and Harman [46] and the work cited therein.
This line of work will not be discussed here because, although
interesting and widely used, it lies outside the focus of this
paper. On the one hand, this paper develops an exact tech-
nique, which can be used to guarantee optimal results, unlike
metaheuristics, which most of the time just produce best-
effort approximations. On the other hand, exact techniques,
which in the past have been overlooked in SBSE, are gaining
momentum in the last few years. In particular, it is worth to
mention the recent trend on requirements selection [16, 26, 42]
and the work on test-suite minimization cited below.

Most authors employing exact techniques resort to some
kind of reduction from an 𝒩𝒫-hard covering problem to a
target problem. These target problems are also 𝒩𝒫-hard,
but general enough to allow the encoding of a vast amount
of problems [13, 24]. As a consequence, they enjoy very effi-
cient optimizers that have been developed and improved for
decades, sometimes with a strong investment from the private
sector.2 These optimizers are indeed exponential in the worst
case, but they can be quite fast for small or reasonable size
instances, instances with certain structure, or even many
large instances.

Quite often the target problem is ILP [23]. Actually, ILP
is close to the covering problems arising in test suite mini-
mization in the sense that its language is expressive enough
to efficiently encode them. The application of ILP to the min-
imization of test suites has been the subject of a number of
works in the literature [5, 11, 44, 47]. An alternative approach
consists in using SAT, instead of ILP, as the target problem.
An extension of SAT with pseudo-boolean constraints is in
fact used as an intermediate representation [3, 27].

More recently, Li et al. [25] proposed power consumption
as a metric for assessing the cost of the test process. They
measured the electrical energy consumed when executing
the individual test cases against the SUT and reduced the
test suite by applying ILP, minimizing the overall power
consumption.

Regarding the evaluation of the approach, much of the
previous work is based on the well-known SIEMENS suite
of C programs [7, 19] (http://sir.unl.edu/portal) where the
application of heuristics have a major impact. For example,
under the unit-cost assumption, the most complex instance
resulting after preprocessing with straightforward heuristics
is a test suite for replace with 215 test cases and 208 char-
acteristics [3].

3 BACKGROUND
In this section we introduce the more important aspects of
the two application domains that we combine in this paper:
mutation testing and WS-BPEL compositions.

3.1 Mutation testing
Mutation testing [34] is a testing technique based on fault
injection. The idea is injecting faults in the code implementing
2http://www-03.ibm.com/press/us/en/pressrelease/26403.wss

http://sir.unl.edu/portal

the SUT by using mutation operators. Mutation operators
produce mutants as a result, which are slight variants of
the original code. Upon execution of the SUT and one of
its mutants against the same test case, two outcomes are
possible. When the results of the execution do not agree, the
mutant has been correctly identified as a faulty piece of code.
Then, it is said that it has been killed by the corresponding
test case and, so, it is dead. This gives evidence that the test
case is useful, as it has served the purpose of detecting the
fault inside the mutant. However, if the results always agree
for every test case in the test suite, then the mutant remains
alive.

In its simplest form, each mutation introduces a single
syntactic change in a program. For example, if a program
contains the arithmetic expression x + y + z and there is a
mutation operator available to replace the arithmetic opera-
tor + by the arithmetic operator -, mutants containing the
expressions x - y + z and x + y - z can be produced.

There are two reasons why a mutant can remain alive after
the execution of the test suite. First, maybe the test suite is
not good enough to detect the difference between the mutant
and the original code. For example, the fault can be located
in a statement that is not covered by the test suite. Second,
and more interesting, the difference may not represent a real
fault. A mutation may happen to produce a variation of a
program with exactly the same functional behavior. In the
latter case, it is said that an equivalent mutant has been
generated. However, distinguishing equivalent mutants from
mutants that simply stay alive after execution is undecidable
and, even when the particular instance is, it can be very
costly.

Mutation testing exhibits two main difficulties: the in-
herent computational cost associated to the execution of
a huge number of mutants and the detection of equivalent
mutants. Regarding the latter difficulty, many authors have
proposed different techniques to reduce the burden of detect-
ing equivalent mutants [2, 4, 8, 14, 15, 17, 31–33, 36–39, 43].
However, in practice, this detection is done by hand, being a
time-consuming and error-prone task. Besides, a terminating
program can be mutated into a non-terminating one. As
termination (and non-termination) is undecidable, it is not
possible, in general, to determine in finite time whether a
program is going to terminate its execution for a given input.

These drawbacks worsen when there are many mutation
operators involved, as it is usual when mutation testing is
applied to mainstream languages [34]. Each mutant has to
be executed against every test case in the test suite and a
high number of mutants can be generated even for an SUT
of modest size.

Traditional mutation, as described above, is also known
as strong mutation. Strong mutation requires that certain
conditions hold [30]. In particular, we have to wait until the
execution terminates to check whether the mutant and the
original program outputs differ. This is certainly a strong
requirement that can be waived to reduce the computational
cost of mutation testing in different ways.

Weak mutation [18] is a cost-reducing technique where
the outputs are compared right after the execution of the
mutated sentence instead of at the end of the execution.
Clearly, this can greatly reduce the execution time, though is
far more difficult to implement than strong mutation. Firm
mutation [45] has the same aim and goes one step forward.
Again, this technique differs from strong mutation in the
way the mutant behavior is inspected to decide whether the
mutant has been killed by the execution. The idea is similar
to weak mutation, but taking advantage of the state of the
program (not just its output) and giving more flexibility about
when to perform the comparison. Thus, testing a mutant in
the context of firm mutation can be seen as inspecting a set
of designated variables, which are called the inspection set. A
mutant is killed by a test case on an inspection set when the
mutant and the original program produce different values for
any variable in the inspection set at some location after the
mutated sentence.

Firm mutation is, therefore, a compromise between strong
and weak mutation. Let 𝑙 be the location where the mutation
is injected. Under firm mutation, the original program and
the mutant can be compared on a given inspection set at
any convenient position located after 𝑙 in its execution path.
Therefore, weak and strong mutation are generalized by firm
mutation. In weak mutation, 𝑙 is just the location of the
mutated sentence, while in strong mutation 𝑙 is the exit
location. Therefore, firm mutation subsumes both weak and
strong mutation [15]. Firm mutation is a relevant technique
in the context of WS-BPEL compositions as we will see in
Section 4.1.

3.2 WS-BPEL compositions
WS-BPEL 2.0 is the OASIS standard [29] for web service
composition. WS-BPEL is an XML-based programming lan-
guage describing the behavior of business processes and how
they interact with other web services. The specification of a
business process with WS-BPEL consists of four steps:

(1) Declaring the process relations with the external part-
ners.

(2) Declaring the process variables.
(3) Declaring the process handlers.
(4) Describing the business logic or process behavior.

The external partners include the client invoking the busi-
ness process and the services invoked by the process itself.
These processes typically include event handlers and fault
handlers too.

WS-BPEL processes are built from activities. Although ba-
sic activities perform only one purpose, they can be grouped
into structured activities, which define the business logic.
Basic activities include tasks like assigning data to a variable,
invoking a web service, receiving a message, replying to a
formerly received message, etc. Structured activities include
classical conditional and loop statements, different flavors
of parallel execution, blocking, etc. Besides, WS-BPEL pro-
cesses can be further structured into different components
through scopes. Scopes usually contain local declarations

codewrapperfontupper=,coltext=green!50!black,colframe=red!95!black,colback=red!5!white

. . .
<!– Structured activity for parallel execution –>
<flow>

<!– Links for specifying synchronization dependencies –>
<links>

<link name = "checkFlight-to-bookFlight" /> <!– Link element –>
</links>
<!– Basic activities invoking the web services –>
<invoke name = "checkFlight" . . . >

<!– Source container for synchronization –>
<sources>

<source linkName = "checkFlight-to-bookFlight" /> <!– Source element
–>

</sources>
</invoke>
<invoke name = "checkHotel" . . . />
<invoke name = "checkRentCar" . . . />
<invoke name = "bookFlight" . . . >

<!– Target container for synchronization –>
<targets>

<target linkName = "checkFlight-to-bookFlight" /> <!– Target element
–>

</targets>
</invoke>

</flow>
. . .

Figure 1: WS-BPEL 2.0 snippet of a travel reservation process.

as above, event handlers and fault handlers. Activities may
have attributes as well as containers associated to them. Of
course, these containers can include elements with their own
attributes too.

WS-BPEL provides concurrency and synchronization mech-
anisms between activities. The basic idea is illustrated in
Figure 1. The flow activity initiates the execution of a set of
activities in parallel. As these activities can be linked together,
a dependence graph is created and concurrent execution is
controlled by the partial order induced on activities by their
dependence graph. Web services checkFlight, checkHotel,
and checkRentCar begin their execution in parallel. However,
bookFlight can only be invoked upon checkFlight comple-
tion. This synchronization between these two activities is
achieved by creating a link: the link target will be eventu-
ally executed only when the source activity of the link is
completed.

4 MINIMIZATION OF WS-BPEL TEST
SUITES

In this section we introduce our approach to the mimimiza-
tion of test suites. Our technique is quite general and can be
applied in practice to almost every SUT and test framework
capable of producing the relevant information that is neces-
sary for the minimization process. In this paper we focus on
developing this technique for the special case of WS-BPEL

compositions with an appropriate test framework because it
presents some challenges and peculiarities.

4.1 Mutation of WS-BPEL compositions
It is always convenient to automate the testing process. How-
ever, in the context of web service compositions, in particular
in the application of mutation testing to WS-BPEL 2.0, this
is a must. An automated tool has to be able to generate the
mutants according to a well-defined and representative set of
mutation operators, execute them against a test suite, and
decide whether a mutant has been killed or not by comparing
its behavior to the original program for each test case. In
addition, it has to incorporate logging and reporting capabil-
ities and take advantage of concurrent or parallel execution
to reduce the testing time.

Given these requirements, we have chosen MuBPEL [10].
This tool implements 26 mutation operators for WS-BPEL 2.0 [9].
Table 1 shows their names alongside a brief description. These
mutation operators have been classified in 5 categories and
those essentially different from mutation operators employed
in mainstream languages have been marked with ★.

MuBPEL proceeds roughly as follows. First, the analyzer
parses the original composition and generates a list of mu-
tation operators and program locations where they can be
applied. With this information, the mutant generator gen-
erates every possible mutant. Then, the execution engine

Table 1: Mutation operators for WS-BPEL 2.0.

Identifier mutation
ISV Replaces a variable identifier by another of the same type

Expression mutation
EAA Replaces an arithmetic operator by another of the same kind.
EEU Removes the unary minus operator from an expression.
ERR Replaces a relational operator by another of the same kind.
ELL Replaces a logical operator by another of the same kind.
ECC Replaces a path operator by another of the same kind.
ECN Modifies a numerical constant by incrementing or decrementing its value, or by adding or removing

one digit.
EMD Modifies a duration expression, replacing it by 0 or by half of its initial value.
EMF ★ Modifies a deadline expression, replacing it by 0 or by half of its initial value.

Activity mutation (parallel)
ACI ★ Changes the createInstance attribute from an inbound message activity to no.
AFP ★ Replaces a sequential forEach activity by a parallel one.
ASF ★ Replaces a sequence activity by a flow activity.
AIS ★ Changes the isolated attribute of a scope to no.

Activity mutation (sequential)
AEL Deletes an activity.
AIE Deletes an elseif element or the else element from an if activity.
AWR Replaces a while activity by a repeatUntil activity and vice versa.
AJC ★ Removes the joinCondition attribute from an activity.
ASI ★ Exchanges the order of two child activities in a sequence activity.
APM ★ Removes an onMessage element from a pick activity.
APA ★ Removes the onAlarm element from a pick activity or from an event handler.

Event and fault mutation
XMF Removes a catch element or the catchAll element from a fault handler.
XMC ★ Removes a compensation handler definition.
XMT ★ Removes a termination handler definition.
XTF Replaces the fault thrown by a throw activity.
XER ★ Removes a rethrow activity.
XEE ★ Removes an onEvent element from an event handler.

deploys the original composition, which is executed against
the given test suite. Finally, the same process is applied to
each mutant and the behavior of the mutant and the original
program are compared to determine whether the mutant has
been killed or stays alive.

MuBPEL builds on a fork of ActiveBPEL [1], a WS-
BPEL 2.0 standard compliant execution engine. It also in-
tegrates BPELUnit [28], a library for unit testing that can
be used with any compliant engine. XML files are used to
describe the test suite. A remarkable feature of BPELUnit
and MuBPEL is that external web services can be replaced
by mocks, which behave following a predefined pattern and
can be used to mimic real web services in a controlled environ-
ment. This way is possible to execute a composition though
some web services are not available. This is very convenient
for our purposes. The use of mocks allows us to repeat an
experiment under exactly the same conditions. We follow a
firm mutation [45] approach according to recent work on the
formalization of mutation testing in the context of WS-BPEL

compositions [10] that includes the technical details about
firm mutation in MuBPEL.

4.2 Execution and cost matrices
The execution matrix, 𝐸, is extracted from the logs produced
by MuBPEL for the WS-BPEL composition. If the proper
command-line options are supplied, MuBPEL will also log
the execution time corresponding to each test case. Therefore,
a cost matrix, 𝐶, can be generated too. In order to get repro-
ducible results, web services have to be fixed in advance and
prepared in a local environment or even the same machine,
so that external factors like network latency, discovery time,
hot-swapping of services, or differences in alternative services
are kept aside during the experiments.

Regarding the execution matrix definition, if 𝑒𝑖𝑗 = 2 for
some 𝑗 then 𝑚𝑖 is an invalid mutant that could not be
properly executed. Otherwise, if mutant 𝑚𝑖 is killed by 𝑡𝑗
then 𝑒𝑖𝑗 = 1, else 𝑒𝑖𝑗 = 0. As for the cost matrix, 𝑐𝑖𝑗 is simply

defined as the execution time of mutant 𝑚𝑖 against test case
𝑡𝑗 .

Henceforth, rows corresponding to invalid mutants are
removed both from 𝐸 and 𝐶. Therefore, it can be assumed
that 𝐸 is a binary matrix and that the times in 𝐶 correspond
to valid executions. 𝐸 and 𝐶 will be 𝑚 × 𝑛 matrices, with
𝑚 = |𝑀 | and 𝑛 = |𝑇 |, where 𝑀 is the set of valid mutants
and 𝑇 is the set of test cases.

4.3 Exact minimization
Our goal is to minimize the number of test cases in WS-BPEL
compositions using the mutation coverage and the execution
cost as metrics to guide the search. Mutation coverage is a
measure of the number of mutants killed by the test suite.
First, we introduce some relevant concepts. A test case is
redundant with respect to a test suite if the set of mutants
killed by the test suite does not change when the test case
is included in the test-suite. A test suite is non-redundant if
it does not contain redundant test cases. A test suite may
contain different non-redundant subsets. These subsets may
contain a different number of test cases while retaining the
same testing power in the sense that they are able to kill the
same mutants. Therefore, it is natural to ask for a minimum
size test suite, or minimal test suite, which preserves mutation
coverage.

A first scenario arises when execution costs are not avail-
able or they can be assumed identical, which is equivalent
to the hypothesis that the test cases can be executed at
unit cost. The problem is reduced to the minimization of a
linear function with binary decision variables and linear con-
straints. Binary decision variables 𝑥1, . . . , 𝑥𝑛 represent which
test cases are selected while constraints ensure that mutation
coverage does not decrease. Consequently, the following BILP
(Binary ILP) can be stated:

arg min

⎧⎨⎩ ∑︁
1≤𝑗≤𝑛

𝑥𝑗

⃒⃒⃒⃒
⃒⃒ ∀𝑖 ∈ [1,𝑚]

∑︁
1≤𝑗≤𝑛

𝑒𝑖𝑗𝑥𝑗 ≥ 1

⎫⎬⎭ (1)

Thanks to the constraints, it is guaranteed that each valid
mutant that can be killed is really killed by at least one
selected test case.

A different, more realistic scenario, implies minimizing the
overall execution cost of the selected test cases. This cost-
aware minimization can be represented through the following
BILP:

arg min

⎧⎨⎩ ∑︁
1≤𝑗≤𝑛

(︂
𝑥𝑗

∑︁
1≤𝑖≤𝑚

𝑐𝑖𝑗

)︂ ⃒⃒⃒⃒
⃒⃒ ∀𝑖 ∈ [1,𝑚]

∑︁
1≤𝑗≤𝑛

𝑒𝑖𝑗𝑥𝑗 ≥ 1

⎫⎬⎭
(2)

This is clearly a generalization of the first problem because
it is enough to fix 𝑐𝑖𝑗 = 1/𝑚 to obtain the previous formula-
tion. In fact, assuming the same cost for every execution is
equivalent to the unit-cost hypothesis in Equation (1).

We have implemented an algorithm in C++ performing the
reduction from 𝐸 and 𝐶 to the corresponding BILP, solving
the BILP with CPLEX [20], checking whether it finds an

optimal solution (otherwise, reporting the situation), and pro-
ducing the expected output along with some simple statistics.
During this reduction, rows corresponding to mutants that
remain alive are removed3, as with rows for invalid mutants.
Optimal solutions are guaranteed if enough computational
resources, specially memory, are granted.

The reduction is linear in the matrix size on the Word
RAM model of computation [12] because it traverses the
matrices and encodes the equations on the fly, which is clearly
Θ(𝑚𝑛). Such an efficient encoding is key, as ILP is 𝒩𝒫-
hard [24] and no algorithm with subexponential worst-case
time is known for any 𝒩𝒫-hard problem. In fact, though
“not too inefficient” superpolynomial algorithms for these
problems are not precluded by the 𝒫 ̸= 𝒩𝒫 hypothesis,
such algorithms cannot exist under the Exponential Time
Hypothesis (ETH) [21]. Linear reductions are thus much
preferred over, say, square or other polynomial reductions.

5 EXPERIMENTS AND DISCUSSION
As with any complex software it is not generally possible,
or sometimes it is simply not convenient, to conduct the
tests for WS-BPEL compositions in a production environ-
ment. Therefore, a test environment has been arranged to
conduct the experiments. This test environment includes a
job queue managed by Condor, a software framework for
coarse-grained distributed parallelization of computationally
intensive tasks [41]. Different computing infrastructure can
be used with Condor. Besides, when necessary, we prepare
mock web services that simulate the behavior of the real
web services involved so that their compositions can be fully
executed in the test environment and the experiments repro-
duced.

In our case, the testing time ranges from minutes to days,
depending on the underlying computing infrastructure and
the web service composition, which determine the number
of test cases and mutants to execute. In fact, the overall
experimentation time can be considerable.

Typically, experiments with WS-BPEL compositions are
repeated several times and results are averaged to better
cater for variability. Sometimes, we noticed that some execu-
tions failed, took too long or their execution times were not
consistent. Upon investigation, several causes were identified:

(1) Resource exhaustion under heavy duty.
(2) Deployment errors produced by invalid mutants.
(3) Non-termination induced by valid mutants.
(4) Flaky tests.

Resource exhaustion can be tackled by reducing the num-
ber of concurrent threads per machine and restarting the
WS-BPEL execution engine periodically to obtain a fresh
environment. WS-BPEL execution engines and the surround-
ing web and application servers can reveal themselves as

3Otherwise, they would produce infeasible constraints (0 ≥ 1).

Table 2: Characteristics of the WS-BPEL compositions under test and results.

Description LOC |𝐼| |𝑀 | |𝐷| |𝑇 | |𝑅| Time (s) Reduction

LA Loan Approval Service [10, 29] 110 1 60 53 8 3 0.01 62.5%
COMBO2 Artificial combination of several compositions [10] 1281 19 890 646 34 17 0.03 50.0%
TRS Travel Reservation Service [10] 384 2 213 152 19 12 0.02 36.8%
MS MetaSearch Engine [10, 28] 633 0 508 424 37 8 0.02 78.8%
LAE Loan Approval Service Extended [10] 1533 0 3647 2891 95 64 2.80 32.6%

memory-hungry processes that are better kept monitored
during experiments.4

As for deployment errors, certain constraints have to be
enforced to avoid the generation of invalid mutants. How-
ever, WS-BPEL is a complex language and invalid mutants
may appear even if mutation operators are implemented
with great care. In traditional languages (like C, C++, Java,
etc.) if a mutation operator produces mutations that are
correct at the syntactic and type-system level, the mutant
can be compiled and executed. Any further problems are de-
layed to run time. However, WS-BPEL constructs are riddled
with semantic constraints whose violation can prevent proper
deployment. These violations are not usually detected in
advance by WS-BPEL execution engines. In our experiments,
invalid mutants are produced when the order of two activities
is reversed inside a sequence activity, an onAlarm element is
removed, or an activity is deleted (operators ASI, APA and
AEL, respectively, in Table 1).

Non-termination generally happens when well-formed ter-
minating compositions are mutated into non-terminating
compositions. Since it is undecidable to determine whether
the execution will eventually halt, a timeout is introduced
and those mutants exceeding the grace period are terminated.

Regarding flaky tests, they may appear as a consequence of
an improper use of non-deterministic constructs in WS-BPEL
leading to random behavior. Sometimes they are induced by
mutation. For example, a sequential forEach activity can be
mutated into a parallel one or into a flow activity (operators
ASF and AFP, respectively, in Table 1). This can introduce
race conditions and synchronization problems. Flaky tests
should be removed when detected.

Once we have completed the experiments and the execution
and cost matrices are available, we can proceed to minimize
the test suites. We have used five WS-BPEL compositions.
Key characteristics of these compositions are included in
Table 2 alongside the results of our experiments. In this table,
LOC stands for the number of lines of WS-BPEL code, 𝐼 is
the set of invalid mutants, 𝑀 is the set of valid mutants, 𝐷
is the set of dead mutants, 𝑇 is the original test suite, and
𝑅 is the reduced test suite. The last two columns represent,
respectively, the time needed to compute 𝑅 from matrix 𝐸,
and the percentage of reduction obtained in the size of the
test suite. Times were measured on a single core of a laptop

4Actually, a severe memory leak was detected in the underlying
WS-BPEL execution engine during the execution of a preliminary
experiment.

featuring 8 GiB DDR3L and an Intel Core i5 5200U CPU at
2.20 GHz. Our algorithm guarantees that 𝐷 is kept invariant
when 𝑇 is replaced by 𝑅 and, therefore, mutation coverage
is preserved: the same mutants are killed by the original test
suite and the optimal one.

First of all, it is important to remark that the size of 𝑅 is
guaranteed to be optimal. In contrast, metaheuristics can only
produce reasonable approximations for combinatorial search
problems, unless the particular instance is small or simple
enough. We face to a constrained discrete combinatorial
optimization problem of size |𝑀 | · |𝑇 |, where |𝑀 | determines
the number of constraints and |𝑇 | determines the number
of variables and the size of the landscape. In fact, when
confronted to a new instance there is no measure of how close
or far we are from the optimal solution.

Second, as the WS-BPEL compositions at hand are rather
small and the numbers of test cases and mutants are mod-
est, it is difficult to assess in advance whether a cost-aware
minimization of 𝑇 really helps. The most complex composi-
tion available for this study is LAE and we have conducted
an experiment to precisely measure the execution time of
each of its 3647 mutants against the 95 test cases available.
The experiment takes about one week of CPU time in our
computing infrastructure, but once the cost information is
available, the minimization of the test suite is computed in
less than 3 seconds in the aforementioned laptop, roughly
the same time employed without using the execution cost as
a metric.

Finally, the mutation testing time of LAE has been cut
from 185.80 hours to 117.32 hours without loosing mutation
coverage, as a result of this minimization effort. In a regression
testing context this represents significant savings during the
whole life cycle.

The source code for the five WS-BPEL compositions,
WSDL specifications and mocks for web services, test suites,
and scripts for the experiments are available at the UCASE
WS-BPEL repository,5 which is maintained by the UCASE
Software Engineering Research Group at the University of
Cádiz. MuBPEL is freely available at https://ucase.uca.es/
mubpel under an open-source license.

6 THREATS TO VALIDITY
The main threats to the validity of our conclusions are con-
cerned with external validity, i.e. the possibility of general-
izing our findings to other web service compositions with
5https://neptuno.uca.es/redmine/projects/wsbpel-comp-repo/wiki

https://ucase.uca.es/mubpel
https://ucase.uca.es/mubpel
https://neptuno.uca.es/redmine/projects/wsbpel-comp-repo/wiki

different features. Since we have only five case studies avail-
able, the natural way to add evidence to our findings is by
replicating our results with different compositions drawn from
different application domains. This is not as easy as it may
seem, as WS-BPEL compositions are scarce. Freely available
WS-BPEL compositions are indeed very rare. On the one
hand, compositions are of economic importance for the en-
terprises that develop them. On the other hand, business
logic and information of strategic value can be buried inside
the composition. Besides, it is not easy to reproduce the
environment in which an enterprise web service composition
is executed.

Scalability can be also an issue but, as mentioned before,
the size of WS-BPEL compositions is usually not high when
compared with applications written in mainstream program-
ming languages. In our experience, the time devoted to the
optimization of the test suite (seconds) is negligible when
compared to the testing time (minutes, hours, or even days,
depending on the WS-BPEL composition and the number of
test cases). Unless the number of test cases is really high, we
do not foresee scalability problems. We have easily managed
around one hundred test cases and thousands of mutants
for a composition. However, as mentioned in Section 4, the
underlying optimization problem is 𝒩𝒫-hard and we cannot
exclude the possibility of stumbling on an insidiously hard
instance of moderate size. After all, the search space for even
one hundred test cases is really huge.

7 CONCLUSIONS AND FUTURE
WORK

We have introduced an exact search-based technique to mini-
mize test suites while maintaining their mutation coverage.
The minimization of test suites is a hard computational prob-
lem whose solution is relevant both to reduce the cost of
mutation testing and to precisely assess the quality of exist-
ing test suites. This problem can be addressed with SBSE
techniques, including exact techniques. We have applied ILP
as an exact technique to reduce the testing effort with ex-
cellent results. Our technique can be adapted to different
formalisms, though this paper focused on testing WS-BPEL
compositions, as it poses several interesting problems. Even
when web service compositions are relatively small, as they
just orchestrate web services, their execution can be very ex-
pensive because the deployment and execution of web services
and the underlying infrastructure are not trivial. Therefore,
although test suites for the compositions themselves are gen-
erally small, it is important to reduce their size as much as
possible without losing coverage.

This paper deals with testing in the context of WS-BPEL
compositions and a particular technique, mutation testing,
but the methodology that we have followed and the lessons
learned are general enough to be of application to other pro-
gramming languages and test frameworks. Actually, we just
require that the execution of individual test cases allows us
to distinguish which characteristics of the SUT are exercised.

In particular, the minimization of the test suite can be done
whenever an execution matrix is available.

Let us remark that the performance is excellent even for
the most complex composition available in this study (LAE)
for which a cost-aware minimization of the test suite has
been performed too.

One highlight of our work is that, in contrast to most
authors, we do not need to assume the same execution cost
for each test case. This assumption is equivalent to consider
a unit cost for every test case, which is indeed an extremely
simplifying assumption. In fact, such an assumption enables
certain reductions in the number of test cases that are not
possible in its absence. This can be achieved by preprocessing
the test suites with very simple heuristics (e.g. subsump-
tion). Thus, heuristics can be applied to reduce the size of
the instance at hand before addressing the minimization ef-
fort with other algorithms. Sometimes the execution costs
for individual test cases are not readily available and this
assumption can be justified. However, when the execution
costs are known or predictable in advance, assuming unit
costs is unrealistic and can clearly lead to suboptimal results,
specially in the context of regression testing.

Future work will be devoted to validating the techniques
described above on new WS-BPEL compositions and ex-
tending the domain of application to other languages. In
particular, we are interested in reducing the cost of testing
C++ programs. Furthermore, a comparison with other SBSE
techniques might also prove interesting.

ACKNOWLEDGMENTS
This work is partially funded by the Spanish Ministry of Econ-
omy and Competitiveness through the National Program for
Research, Development and Innovation, with funds of the
European Union (European Regional Development Fund -
ERDF), projects TIN2015-65845-C3-1-R, TIN2015-65845-C3-
3-R (DArDOS) and, also for the first author, project TIN2014-
60844-R (SAVANT). The fourth author is also partially
funded by the Comunidad de Madrid, project S2013/ICE-
3006 (SICOMORo-CM).

REFERENCES
[1] ActiveVOS. 2009. Version 5.0.2 of the ActiveBPEL engine. (Jan.

2009). Retrieved February 1, 2018 from http://sourceforge.net/
projects/activebpel502

[2] K. Adamopoulos, M. Harman, and R. M. Hierons. 2004. How
to overcome the equivalent mutant problem and achieve tailored
selective mutation using co-evolution. In GECCO 2004: Proceed-
ings of the Genetic and Evolutionary Computation Conference.
1338–1349.

[3] F. Arito, F. Chicano, and E. Alba. 2012. On the Application of
SAT Solvers to the Test Suite Minimization Problem (LNCS),
Vol. 7515. Springer, 45–59.

[4] D. Baldwin and F. G. Sayward. 1979. Heuristics for Determin-
ing Equivalence of Program Mutations. Techreport 276. Yale
University, New Haven, Connecticut.

[5] J. Black, E. Melachrinoudis, and D. Kaeli. 2004. Bi-criteria models
for all-uses test suite reduction. In Proc. 26th Int. Conf. on Soft.
Engineering. 106–115.

[6] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and
Mark Harman. 2017. An Empirical Study on Mutation, Statement
and Branch Coverage Fault Revelation that Avoids the Unreliable

http://sourceforge.net/projects/activebpel502
http://sourceforge.net/projects/activebpel502

Clean Program Assumption. In Proceedings of the 39th Interna-
tional Conference on Software Engineering (ICSE ’17). IEEE
Press, Piscataway, NJ, USA, 597–608. https://doi.org/10.1109/
ICSE.2017.61

[7] H. Do, S. Elbaum, and G. Rothermel. 2005. Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and
Its Potential Impact. Empirical Software Engineering 10, 4
(2005), 405–435. https://doi.org/10.1007/s10664-005-3861-2

[8] M. Ellims, D. Ince, and M. Petre. 2007. The Csaw C Mutation
Tool: Initial Results. In TAICPART-Mutation’07: Proceedings of
the Testing: Academic and Industrial Conference Practice and
Research Techniques - Muation. IEEE Computer Society Press,
185–192.

[9] A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-Bulo. 2008.
Mutation Operators for WS-BPEL 2.0. In ICSSEA 2008, 21th
International Conference on Software & Systems Engineering
and their Applications. 7.

[10] A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo, J. J.
Domínguez-Jiménez, and A. García-Domínguez. 2015. Quality
metrics for mutation testing with applications to WS-BPEL com-
positions. Softw. Test., Verif. Reliab. 25, 5–7 (2015), 536–571.

[11] K. Fischer. 1977. A test case selection method for the validation
of software maintenance modifications. In Proceedings of Interna-
tional Computer Software and Applications Conference. IEEE
Computer Society Press, 421–426.

[12] M. L. Fredman and D. E. Willard. 1993. Surpassing the Informa-
tion Theoretic Bound with Fusion Trees. J. Comput. Syst. Sci. 47,
3 (1993), 424–436. https://doi.org/10.1016/0022-0000(93)90040-4

[13] M. R. Garey and D. S. Johnson. 1979. Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness. W. H. Freeman.

[14] B. J. M. Grün, D. Schuler, and A. Zeller. 2009. The Impact of
Equivalent Mutants. In Mutation’09: 4th International Workshop
on Mutation Analysis. IEEE Computer Society Press, 192–199.

[15] M. Harman, R. Hierons, and S. Danicic. 2001. Mutation Testing
for the New Century. Kluwer Academic Publishers, Chapter The
relationship between program dependence and mutation analysis,
5–13.

[16] M. Harman, J. Krinke, I. Medina-Bulo, F. Palomo-Lozano, J. Ren,
and S. Yoo. 2014. Exact scalable sensitivity analysis for the next
release problem. ACM Trans. Softw. Eng. Methodol. 23, 2 (2014),
19:1–19:31. https://doi.org/10.1145/2537853

[17] R. Hierons, M. Harman, and S. Danicic. 1999. Using Program
Slicing to Assist in the Detection of Equivalent Mutants. Software
Testing, Verification and Reliability 9 (1999), 233–262.

[18] W. E. Howden. 1982. Weak Mutation Testing and Completeness
of Test Sets. IEEE Transactions on Software Engineering 8, 4
(1982), 371–379.

[19] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. 1994. Ex-
periments on the effectiveness of dataflow- and control-flow-
based test adequacy criteria. In Proceedings of 16th Interna-
tional Conference on Software Engineering. 191–200. https:
//doi.org/10.1109/ICSE.1994.296778

[20] IBM. 2018. IBM ILOG CPLEX Optimization Studio 12.8.0. (Jan.
2018). Retrieved February 1, 2018 from http://www-01.ibm.com/
support/docview.wss?uid=swg27050618

[21] R. Impagliazzo and R. Paturi. 1999. Complexity of k-SAT. In Pro-
ceedings of the 14th Annual IEEE Conference on Computational
Complexity. 237–240. https://doi.org/10.1109/CCC.1999.766282

[22] Y. Jia and M. Harman. 2011. An Analysis and Survey of the
Development of Mutation Testing. IEEE Trans. Softw. Eng. 37,
5 (2011), 649–678. https://doi.org/10.1109/TSE.2010.62

[23] M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R.
Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey (Eds.).
2010. 50 Years of Integer Programming 1958-2008 - From the
Early Years to the State-of-the-Art. Springer. https://doi.org/
10.1007/978-3-540-68279-0

[24] R. M. Karp. 1972. Complexity of Computer Computations.
Plenum Press, Chapter Reducibility among Combinatorial Prob-
lems, 85–103.

[25] D. Li, Y. Jin, C. Sahin, J. Clause, and W. G. J. Halfond. 2014.
Integrated Energy-directed Test Suite Optimization. In ISSTA
2014: Proceedings of the 2014 International Symposium on
Software Testing and Analysis. ACM, 339–350.

[26] L. Li, M. Harman, F. Wu, and Y. Zhang. 2017. The Value of Exact
Analysis in Requirements Selection. IEEE Trans. Software Eng.
43, 6 (2017), 580–596. https://doi.org/10.1109/TSE.2016.2615100

[27] R. E. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, and E.
Alba. 2013. Multi-objective Optimal Test Suite Computation for

Software Product Line Pairwise Testing. In 29th IEEE Int. Conf.
on Software Maintenance. IEEE, 404–407.

[28] P. Mayer and D. Lübke. 2006. Towards a BPEL unit testing
framework. In TAV-WEB’06, 2006 workshop on Testing, anal-
ysis, and verification of web services and applications. ACM,
33–42.

[29] OASIS. 2007. Web Services Business Process Execution Lan-
guage 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html. (2007).

[30] A. J. Offutt. 1988. Automatic test data generation. Ph.D. Dis-
sertation. Georgia Institute of Technology, Atlanta, GA, USA.

[31] A. J. Offutt and W. M. Craft. 1994. Using Compiler Optimization
Techniques to Detect Equivalent Mutants. Software Testing,
Verification and Reliability 4, 3 (1994), 131–154.

[32] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. 1996.
An Experimental Determination of Sufficient Mutant Operators.
ACM Transactions on Software Engineering and Methodology 5
(1996), 99–118. Issue 2.

[33] A. J. Offutt and J. Pan. 1997. Automatically Detecting Equivalent
Mutants and Infeasible Paths. Software Testing, Verification
and Reliability 7, 3 (1997), 165–192.

[34] A. J. Offutt and R. H. Untch. 2001. Mutation Testing for the
New Century. Kluwer Academic Publishers, Chapter Mutation
2000: Uniting the Orthogonal, 34–44.

[35] A. J. Offutt and J. M. Voas. 1996. Subsumption of condition
coverage techniques by mutation testing. Technical Report ISSE-
TR-96-01. Department of Computer Science, George Mason Uni-
versity.

[36] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon. 2015. Trivial
Compiler Equivalence: A Large Scale Empirical Study of a Simple,
Fast and Effective Equivalent Mutant Detection Technique. In
37th IEEE/ACM International Conference on Software Engi-
neering, ICSE 2015. 936–946. https://doi.org/10.1109/ICSE.
2015.103

[37] D. Schuler, V. Dallmeier, and A. Zeller. 2009. Efficient Mutation
Testing by Checking Invariant Violations. In ISSTA ’09: Proceed-
ings of the 18th International Symposium on Software Testing
and Analysis. 69–80.

[38] D. Schuler and A. Zeller. 2010. (Un-)Covering Equivalent Mutants.
In ICST ’10: Proceedings of the 3rd International Conference on
Software Testing, Verification and Validation. IEEE Computer
Society, 45–54.

[39] B. Schwarz, D. Schuler, and A. Zeller. 2011. Breeding High-Impact
Mutations. In ICSTW ’11: Proceedings of the 2011 IEEE Fourth
International Conference on Software Testing, Verification and
Validation Workshops. 382–387.

[40] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and
X. Xu. 2014. Web services composition: A decade’s overview.
Information Sciences 280 (2014), 218–238. https://doi.org/10.
1016/j.ins.2014.04.054

[41] D. Thain, T. Tannenbaum, and M. Livny. 2005. Distributed
Computing in Practice: The Condor Experience: Research Articles.
Concurr. Comput.: Pract. Exper. 17, 2-4 (Feb. 2005), 323–356.
https://doi.org/10.1002/cpe.v17:2/4

[42] N. Veerapen, G. Ochoa, M. Harman, and E. K. Burke. 2015. An In-
teger Linear Programming approach to the single and bi-objective
Next Release Problem. Information and Software Technology 65
(2015), 1–13. https://doi.org/10.1016/j.infsof.2015.03.008

[43] J. Voas and G. McGraw. 1997. Software Fault Injection: Inocu-
lating Programs Against Errors. John Wiley & Sons.

[44] L. Wang, R. Wan, M. Wang, and M. Li. 2009. Generating Small
Combinatorial Test Suite via LP. In WISA’09: Proc. of the 2009
Int. Symp. on Web Information Systems and Applications. 226–
229.

[45] M. R. Woodward and K. Halewood. 1988. From Weak to Strong,
Dead or Alive? an Analysis of Some Mutationtesting Issues. In
TVA’88: 2nd Workshop on Software Testing, Verification, and
Analysis. IEEE Computer Society, 152–158.

[46] S. Yoo and M. Harman. 2012. Regression testing minimization, se-
lection and prioritization: a survey. Software Testing, Verification
and Reliability 22, 2 (2012), 67–120.

[47] H. Zhong, L. Zhang, and H. Mei. 2008. An experimental study
of four typical test suite reduction techniques. Information and
Software Technology 50, 6 (2008), 534–546.

https://doi.org/10.1109/ICSE.2017.61
https://doi.org/10.1109/ICSE.2017.61
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1145/2537853
https://doi.org/10.1109/ICSE.1994.296778
https://doi.org/10.1109/ICSE.1994.296778
http://www-01.ibm.com/support/docview.wss?uid=swg27050618
http://www-01.ibm.com/support/docview.wss?uid=swg27050618
https://doi.org/10.1109/CCC.1999.766282
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1007/978-3-540-68279-0
https://doi.org/10.1007/978-3-540-68279-0
https://doi.org/10.1109/TSE.2016.2615100
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1016/j.ins.2014.04.054
https://doi.org/10.1016/j.ins.2014.04.054
https://doi.org/10.1002/cpe.v17:2/4
https://doi.org/10.1016/j.infsof.2015.03.008

	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Mutation testing
	3.2 WS-BPEL compositions

	4 Minimization of WS-BPEL test suites
	4.1 Mutation of WS-BPEL compositions
	4.2 Execution and cost matrices
	4.3 Exact minimization

	5 Experiments and discussion
	6 Threats to validity
	7 Conclusions and future work
	Acknowledgments
	References

