
Passive Testing of Timed Distributed Systems �

César Andrés1, M. Emilia Cambronero2, and Manuel Núñez1

c.andres@fdi.ucm.es,emicp@dsi.uclm.es, mn@sip.ucm.es

Dept. Sistemas Informáticos y Computación Universidad Complutense de Madrid,
28040 Madrid, Spain

Abstract. This paper presents a formal framework to perform passive
testing of service-oriented systems. Our approach uses the historical in-
teraction files between web services to check the absence of faults. It uses
a set of properties, that we call invariants, to represent the most relevant
expected behavior of the web services under test. Intuitively, an invariant
expresses the fact that each time the system under test performs a given
sequence of actions, it must exhibit a behavior reflected in the invariant.
Invariants can be defined from a local point of view, that is, to check
properties of isolated web services, and from a global point of view, that
is, to check web service interaction properties. In order to increase appli-
cability and adaption to a real environment, we assume that we do not
have a global log. We show how to use local logs (recorded in each web
service) in order to check local properties and how to combine them in
order to check global properties.

Keywords: Passive Testing, Service Oriented Systems, Monitoring.

1 Introduction

The complexity of current systems, the large number of people working on them,
and the number of different modules that interact with each other, make it
difficult to assess their correctness. Testing techniques allow us to provide a
degree of confidence in the correctness of a system. Testing techniques can be
combined with the use of formal methods in order to semi-automatically perform
some of the tasks involved in testing. The application of formal testing techniques
to check the correctness of a system requires to identify its critical aspects,
that is, those characteristics that will make the difference between correct and
incorrect behaviors. While the relevant aspects of some systems only concern
what they do, in some other systems it is equally relevant how they do what
they do. Thus, during the last years formal testing techniques also deal with non-
functional properties. In this work we will focus on web services, which relate
technologies for supporting Service-Oriented Computing, and consider systems
that contain temporal restrictions, being already several proposals for timed
testing (see for example, [?,?], for some proposals to test timed systems).

� Research partially supported by the Spanish MEC project TESIS TIN2009-14312-
C02.

ISP

TRARS TA

Fig. 1. Structure of the web services monitoring.

In testing there are usually two approaches: Active and passive testing. The
main difference between them is how a tester can interact with the Implemen-
tation Under Test (IUT). In the active paradigm the tester is allowed to apply
any set of tests to the IUT. In passive testing, the tester is only an observer of
the IUT, and he has to provide a degree of confidence of the system, only taking
into account the monitored traces.

In this paper we present a formal passive testing methodology to test web ser-
vices with temporal restrictions. In our passive testing paradigm, testers provide
a set of invariants that represents the most relevant properties that they would
like to check against the logs. Our approach makes use of the ideas presented
in [?], a timed extension of the framework defined in [?], to define invariants,
in [?] to define orchestrator and choreography behaviors, and in [?], our previous
approach to test web services using invariants without considering a timed envi-
ronment. In this paper, a Service-Oriented Scenario consists of a large number
of services that interact with each other. For example, let ARS, TR and TA be
three web services that are interacting. When this set of services is monitored
according to [?], we have the scheme presented in Figure ??. The set of requests
of the web services is conveyed across a network operated by an ISP. When the
monitoring task is performed, a set of four logs is provided, corresponding to
the ARS, ISP, TR, and TA web services, respectively. Passive testing techniques
make use of invariants to represent the properties that we like to check against
these logs. According to the previous monitoring result, we are able to observe
all traces of the system composition if we monitor the ISP system. In this paper,
however we do not assume that we can monitor the ISP system, because this
task is difficult and very costly, due to the fact that the ISP can be composed of
a set of ISPs and its internal structure becomes very complex. We also assume
that we are not provided with a global clock to mark the time stamps associated
to actions. Furthermore, the clocks of the set of services can differ from each
other. Within this scenario, we show how we can define local invariants that
involve the local logs of the services, and how we can solve the absence of the
global log, by combining the set of local logs, that can be used to check global
invariants.

Our invariants can be seen as the SLAs presented in [?], but there are some
relevant differences. In [?] the set of SLAs are formulas that are extracted from
the most frequent patterns of the specification. So, these formulas do not contra-
dict the specification. In our approach, we assume that invariants are provided

either by a tester or by using data mining techniques [?]. So, the correctness of
the invariants must be checked with respect to the specification. Most impor-
tantly we do not need to exchange additional information between web services
since we have a decentralized approach.

There already exist several approaches to study the integration of formal
testing in web services, providing formal machinery for representing and ana-
lyzing the behavior of communicating concurrent/distributed systems. Next we
briefly review some previous work related to our framework. In [?] an automatic
back-box testing approach for WS-BPEL orchestrations was presented, which
was based on translation into Symbolic Transition System and Symbolic Ex-
ecution. This approach supports the rich XML-based data types used in web
services without suffering from state explosion problems. This work was inspired
in a previous work on symbolic testing [?], where the authors showed a model-
ing and testing approach focused on detecting failures, supporting conformance,
and reducing drastically the effort to design test cases, validate test coverage,
and execute test cases. In [?] a methodology to automatically generate test cases
was presented. The authors combine coverage of web services operations with
data-driven test case generation. These test cases were derived from WSDL [?]
descriptions. For that purpose, they used two tools: soapUI [?] and TAXI [?]. The
first one generates stubs of SOAP calls for the operations declared in a WSDL
file. The other one facilitates the automated generation of XML instances from an
XML Schema. In [?] the authors present different mechanisms to collect traces.
They also study the differences between online and offline monitoring, being the
main difference that the testing algorithms in online monitoring are adapted to
analyze the information as soon as possible, so a huge amount of computational
resources is needed. Their methodology differs from our approach since they use
the specification to check the correctness of the traces, while we might have only
invariants, and they record global traces while we can operate at a local level.
The work reported in [?] presents how Service Level Agreements (SLAs) among a
web service provider, a web service user, and an Internet Service Provider (ISP)
should be arranged in a manner that they can be monitored. The work presented
in [?] deals with the problem of auto extracting a set of services that conform
to a given choreography.

The rest of this paper is structured as follows. First, Section ?? presents our
formal framework to represent web services choreographies, and orchestrations.
In Section ?? we present how to define local and global invariants. Finally, in
Section ?? we present our conclusions and some lines for future work.

2 Preliminaries

In this section we present our formalism to define web services and choreogra-
phy models. We follow the ideas underlying the definition of orchestration and
choreography model behaviors presented in [?]. However, instead of Finite State
Machines, we use Timed Automata, with a finite set of clocks over a dense time
domain, to represent orchestrations. Since we will not use most of the technical

machinery behind Timed Automata, the reader is referred to [?]. The internal
behavior of a web service is given by a Timed Automaton where the clock do-
main is defined in IR+. The choice of a next state in the automaton does not
only depend on the action, but also on the timed constraints associated to each
transition. Only when the time condition is satisfied by the current values of
the clocks, the transition can be triggered. We assume that the communication
between systems is asymmetric.

Definition 1. A clock is a variable c in IR+. A set of clocks will be denoted by
C. A timed constraint ϕ on C is defined by the following EBNF:

ϕ ::= ϕ ∧ ϕ | c ≤ t | c < t | ¬ϕ

where c ∈ C and t ∈ IR+. The set of all timed constraints over a set C of clocks
is denoted by φ(C).

A clock valuation ν for a set C of clocks assigns a real value to each of them.
For t ∈ IR+, the expression ν + t denotes the clock valuation which maps every
clock c ∈ C to the value ν(c) + t. For a set of clocks Y ⊆ C, the expression
ν[Y := 0] denotes the clock valuation for C which assigns 0 to each c ∈ Y and
agrees with ν over the rest of the clocks. The set of all clock valuations is denoted
by Ω(C).

Let ν be a clock valuation and ϕ be a timed constraint. We write ϕ � ν iff ν
holds ϕ; ϕ � ν denotes that ν does not hold ϕ. ��

Next we define a web service. The internal behavior of a web service, in terms
of its interaction with other web services, is represented by a Timed Automaton.

Definition 2. We call any value t ∈ IR+ a fixed time value. For all t ∈ IR+ we
have both t < ∞ and t +∞ = ∞. We say that p̂ = [p1, p2] is a time interval if
p1 ∈ IR+, p2 ∈ IR+ ∪ {∞}, and p1 ≤ p2. We consider that IIR+ denotes the set
of time intervals.

Along this paper ID denotes the set of web service identifiers. A web service
is a tuple A = (id,S, s0, Σ, C,Z, E) where id ∈ ID is the identifier of the service,
S is a finite set of states, s0 ∈ S is the initial state, Σ is the alphabet of actions,
C is a finite set of clocks, Z : S → φ(C) associates a time condition to each state,
and E ⊆ S × {id} ×Σ × ID × φ(C)× ℘(C)× S is the set of transitions. We will
consider that Σ is partitioned into two (disjoint) sets of inputs denoted by I,
preceded by ?, and outputs denoted by O, preceded by !. Along this paper ΣID

denotes the set ID ×Σ × ID.
We overload the � symbol. Let s ∈ S and ν ∈ Ω(C). We denote by s � ν the

fact that ν holds Z(s) (resp. s � ν represents that ν does not hold Z(s)). Let
e = (s, id, α, id′, ϕ,Y, s′) ∈ E . We denote by e � ν the fact that ν holds ϕ (resp.
e � ν represents that ν does not hold ϕ). ��

Intuitively, a transition (s, id, α, id′, ϕ,Y, s′) indicates that if the system is at
state s and the current valuation of the clocks holds ϕ, then the system moves
to the state s′ performing the action α from id to id′ and resetting the clocks

Automaton E
s0start

s1
x < 40

s2
s3

s4
s5

A.!Connect
true

G.?Hello
x < 40

G.?Hello
x ≥ 40

M.!Coffee
true

M.!Tea
x ≥ 40

Automaton M
s0start

s1
x < 40

s2
s3

s4
s5

A.!Connect
true

C.?Good Morning

x < 40

C.?Good Morning

x ≥ 40

E.?Coffee
true

E.?Tea
true

Automaton G
s0start

s1
x < 40

s2
s3

s4
s5

A.!Connect
true

E.!Hello
x < 40

E.!Hello
x ≥ 40

C.!Thank you

true

C.!Good Bye

true

Automaton C
s0start

s1
x < 40

s2
s3

s4
s5

A.!Connect
true

M.!Good Morning

x < 40

M.!Good Morning

x ≥ 40

G.?Thank you

true

G.?Good Bye

true

Fig. 2. Example of four web services.

in Y. In other words if we consider e1 = (s, id, ?α, idb, ϕ,Y, s′) then the action
α is emitted from id to idb, and if we consider e2 = (s, id, !α, idb, ϕ,Y, s′) then
the action α is received on id from idb. For each state s, Z(s) represents a timed
constraint for s, that is, the system can remain in s while the current valuation
of the clocks holds Z(s). We will assume the following usual condition on timed
automata: For all s ∈ S and all valuation ν ∈ Ω(C) if s � ν then there exists at
least a transition e = (s, id, α, id′, ϕ,Y, s′) ∈ E with e � ν. This property allows
to leave a state once the restrictions on clocks do not hold in that state.

Example 1. Next we present a small running example to explain the previous
concepts. Let us consider the set of four web services represented in Figure ??. In
this example we will consider that we have only one clock for each web service,
and it is set to 0 in the transition that reach the state s1. The time constrains
represented in some states, for example x < 40 in s1 of G, represent the time that
this automaton is allowed to be in the state. In the transitions are represented
two items. The first one is a pair composed of the id of the web service that
interacts with this automaton and the action that they exchange. The second
one represents the condition to trigger this transition.

These automata are communicating each others. All of them start receiving
Connect from another web service, called A, in order to be synchronized. After
this, each one has its own behaviour. Let us remark that the time between
receiving Connect, and to perform next action will decide the future behaviour
of the web service. For example if we consider that this time is less than 40 time
unit and M sends Good Morning to C. Then after any elapsed of time it only can
send to E the message Tea. ��

The semantics of a web service is given by translating it into a labeled tran-
sition system with an uncountably number of states. Let us remark that, in
general, we will not construct the associated labeled transition system; we will
use it to reason about the traces of the corresponding timed automaton.

Definition 3. A Labeled Transition System, in short LTS, is defined by a tuple
M = (ID,Q, q0, Σ,→), where ID is a set of web service identifiers, Q is a set of
states, q0 ∈ Q is the initial state, Σ is the alphabet of actions, and the relation
→⊆ Q×ΣID ∪ IR+ ×Q represents the set of transitions.

Let A = (id,S, s0, Σ, C,Z, E) be a web service. Its semantics is defined by
its associated LTS, AM = (ID,Q, q0, Σ,→), where Q = {(s, ν) | s ∈ S ∧ ν ∈
Ω(C) ∧ s � ν}, q0 = (s0, ν0), being ν0(c) = 0 for all c ∈ C, and we apply two
rules in order to generate the elements of →. For all (s, ν) ∈ Q we have:

– If for all 0 ≤ t′ ≤ t we have s � (ν + t′), then ((s, ν), t, (s, ν + t)) ∈→.
– If e � ν, for e = (s, id, α, id′, ϕ,Y, s′) ∈ E , then ((s, ν), (id, α, id′), (s′, ν[Y :=

0])) ∈→.

In addition, we consider the following conditions: (a) If we have q t−−→ q′ and

q′ t′−−→ q′′, then we also have q
t+t′−−−−→ q′′ and (b) if q 0−−→ q′ then q = q′, that is, a

passage of 0 time units does not change the state. The set of all LTS associated
with web services will be denoted by SetLTS. ��

Next, we introduce the notion of visible trace, or simply trace. As usual, a
trace is a sequence of visible actions and time values.

Definition 4. Let M = (ID,Q, q0, Σ,→) be a LTS, ϑ1, . . . , ϑn ∈ ΣID, and
t1, . . . , tn−1 ∈ IR+. We say that σ = 〈ϑ1, t1, ϑ2, t2, . . . , tn−1, ϑn〉, with n > 0, is
a visible trace, or simply trace, of M if there exits the transitions (q1, ϑ1, q2),
(q2, t1, q3), . . . , (q2∗n−2, tn−1, q2∗n−1), (q2∗n−1, ϑn, q2∗n) ∈→. We will denote by
NT(M) the set of all visible traces.

We define the function TT as the sum of all time values of a normalized
visible trace, that is TT(σ) =

∑n−1
i=1 ti. We denote by σ<< ⊆ SetNVT the set of

all subsequences of σ that are visible traces. ��

We will usually consider normalized visible traces since this is what we ob-
serve from the execution of a system. We cannot observe either internal activity
(that is, the performance of internal actions) or different passages of time asso-
ciated to different transitions. Logs recorded from a IUT, will look like visible
traces.

Example 2. Let us consider the web services presented in Figure ??, and M.LOG =
〈A.!Connect, 60, C.?Good Morning, 50, E.?Tea, 〉 be a local log recorded in the
web service M. Intuitively, this log represents that A sends Connect to M in order
to synchronize with the others web services. Then, after 60 time units, M has
sent to C the message Good Morning, and after 50 local time units, it has sent
to E the action Tea. ��

Next we introduce our formalism to represent choreographies. Contrarily to
systems of orchestrations, choreographies focus on representing the interaction of
web services as a whole. Thus a single machine, instead of the composition of sev-
eral machines, is considered. The choreography model also is a timed automata,
but there are the following differences with respect to web services model: The
first one is that there exists only one clock, that is called global clock; the second
one is that in the transitions is represented the interaction of the web services,
and the third one is that the valuation of the global clock in the initial state is
0, and it can not be reseted.

s0start

s1 s2

s3 s4

s5

s6

s7

s8

s9

s10

A Connect−−−−−→ G, true

A Connect−−−−−→ C, true

A Connect−−−−−→ E, true

A Connect−−−−−→ M, true

E Hello−−−−→ G, true

M
Good Morning−−−−−−−−−→ C, true

C
Thank you−−−−−−−→ G, x < 40

M Coffee−−−−−→ E, true

C
Good Bye−−−−−−−→ G, x ≥ 40

M Tea−−→ E, true

Fig. 3. Choreography of C, E, G and M.

Definition 5. A choreography machine is a tuple D = (S, Σ, ID, s0, {x},Z, T)
where S denotes the set of states, Σ is the set of messages, ID is the set of web
service identifiers, s0 ∈ S is the initial state, {x} is a clock called global clock,
Z : S → φ({x}) associates a time condition to each state, and T ⊆ S ×ΣID×S
is the set of transitions. The initial valuation of {x} is 0. And this clock can
never be reseted. ��

The notions of traces, and the transformation of the choreography into its LTS
associated are similar that the one presented for the web services. Concerning
choreography machines, transitions are tuples (s, id, α, id′, ϕ, s′) where s, s′ ∈ S
are the initial and final states, α is the message, and id, id′ ∈ ID are the sender
and the addressee of the message, respectively. Next, let us introduce the idea
of choreography with the following example.

Example 3. Let us consider the choreography represented in Figure ??. In this
model is denoted the global behaviour of the web services presented in Figure ??.
Let us denote that the initial valuation of the global clock, by means x is 0.

In the figure, the transition s4E
Hello−−−−−→ G, true, s5 represents that the web

service E will send the message Hello to G. The value true means that there
not exists any time constrain associated with this transition. This choreography
is a reduced graph of the complete choreography of these web services. In the
complete one we will have to increase with the permutation of all possible inter-
action of the web services from s0 to s6, from s6 to s8 and from s6 to s10. ��

3 Invariants

In this section we introduce the notion of invariant. Invariants are used in our
approach to represent the properties that we would like to check against the logs
extracted from the IUT. The notion of invariant being correct with respect to a
specification means that if the invariant detects a mismatch, then the implemen-
tation that has generated this log is incorrect with respect to the specification.
First, after producing a set of invariants and before checking them against the
log, they must be checked against the specification; otherwise, we might have an
invariant which indicates an erroneous behavior that does not violate the require-
ments expressed in the specification. Another possibility would be to consider
that invariants are correct by definition. In this case a mismatch will automati-
cally imply that a fault was detected.

We present two different kinds of invariants: Local invariants and global in-
variants. The first type is used to express properties of isolated web services,
while the second one, will use the combination of all isolated logs, to check some
significant properties at the system level.

3.1 Local Invariants

Definition 6. Let A = (ida,S, s0, Σ, C,Z, E) be a web service. We say that the
sequence φida is a local invariant for A if it is defined according to the following
EBNF:

φida ::= Body �→ Consequent

Body ::= ϑ/p̂, Body | � /p̂, Body | ϑ′/p̂
Consequent ::= O � p̂

In this expression we consider that p̂ ∈ IIR+ , ϑ
′ ∈ {ida} ×Σ × ID, ϑ ∈ {ida} ×

Σ ∪ {?} × ID, and O ⊆ {ida} ×Σ × ID.
Let φid = P �→ R be a local invariant. We define the functions Body(φid) = P

and Consequent(φid) = R. The set of all invariants for a set of web services
identifiers ID is denoted by ΦID, and the set of all bodies of these invariants is
denoted by Φbody

ID . ��

Let us remark that time conditions established in invariants are given by
intervals. However, web services in our formalism present fix time. Intervals rep-
resent the idea that it can be admissible that the execution of a task sometimes
takes more time than expected: If most of the times the task is performed on
time, a small number of delays can be tolerated. Moreover, another reason for
the tester to allow imprecisions is that the artifacts measuring time while testing
a system might not be as precise as desirable. In this case, an apparent wrong
behavior due to bad timing can be in fact correct since it may happen that the
clocks are not working properly.

In our framework, the symbol ? can replace any action while the symbol � can
replace a sequence of actions not containing the first action symbol that appears
in the part of the invariant that follows it. Intuitively, the EBNF expresses that
a local invariant is either a sequence of symbols where each component, but

the last one, is either or an expression ida, α, idb/p̂, with ida and idb being web
services identifier, with α being an action or the wildcard character ?, and p̂
being a timed interval, or an expression �/p̂.

There are two restrictions to this rule: a local invariant cannot contain two
consecutive components �/[p1, p2] and �/[q1, q2] since this situation could be
simulated by means of the expression �/[p1 + q1, p2 + q2], and a local invariant
cannot present a component of the form �/p̂ followed by a wildcard character ?,
that is, the action of the next component must belong to Σ. The last component,
corresponding to the expression ϑ′/p̂ �→ O � q̂, is composed of two web service
identifiers associated with an action, that is ϑ′, followed by a timed interval, and
followed by a set of triples identifier/actions/identifier and another time interval.

When we check a log with respect to a local invariant, first we check if the
log matches the body of the invariant. When we find a sequence that matches,
then we check the correctness of this sequence. The correctness of a sequence
can have the usual three valued valuations: correct, incorrect and inconclusive.
The result is returned inconclusive if the trace never matches the body of the
invariant. An invariant can detect an error with respect to two restrictions.
These are represented in the consequent part of the invariant, that is O � q̂.
The first requirement is given by O, and it is associated to the last term of the
log. It means that if a log 〈ϑ1, . . . , ϑn〉 matches the body of the invariant, then
last component, by means ϑn, must belong to O. Meanwhile q̂ means that the
sum of all time values presented in the log must belong to this interval, that is
TT(〈ϑ1, . . . , ϑn〉) ∈ q̂.

Definition 7. Let ϑ = 〈ida, α, idb〉, ϑ′ = 〈id′a, α′, id′b〉 ∈ ΣID, be two items of a
normalized visible trace, t ∈ IR+ be a time value and p̂ ∈ IIR+ be an interval. We
define the function compare, denoted by c : (ΣID × IR+)× (ΣID ×IIR+) �→ Bool
as follow:

c(〈ϑ, t〉, (ϑ′/p̂)) = ((ida = id′a) ∧ (idb = id′b) ∧ (α = α′) ∧ (t ∈ p̂))

Let σ = 〈ϑ1, t1, . . . , ϑn, tn〉, be a normalized visible trace, with n > 0, and
μ = (ϑ′/p̂, . . . , ϑ′m/p̂m), with m > 0, be a body of an invariant. Let Match :

SetNVT×Φbody
ID �→ Bool be a function that computes if a normalized visible trace

and an invariant matches. Formally we define Match(σ, μ) as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

false if n > 1 ∧m = 1 ∨ n = 1 ∧m > 1
c(〈ϑ1, t1〉, (ϑ′

1/p̂1)) if σ = 〈ϑ1, t1, ϑ2〉 ∧ μ = (ϑ′
1/p̂1)

Match(〈ϑ2, . . . , ϑn〉, (ϑ′
2/p̂2, . . . , ϑ

′
m/p̂m)) if n > 1 ∧m > 1 ∧ c(〈ϑ1, t1〉, (ϑ′

1/p̂1))
false if n > 1 ∧m > 1 ∧ ¬c(〈ϑ1, t1〉, (ϑ′

1/p̂1))
M’(σ, μ′, q̂, 0) if n > 2 ∧ μ = (�/q̂, . . . , ϑ′

m, p̂m)

where M’ : SetNVT×Φbody
ID × IIR+ × IR+ → Bool is an auxiliary function used to

compute the appearance of the wildcard �.

Let μ = (ϑ′1/p̂
′
1, . . . ϑ

′
m/p̂

′
m), with m > 0 and ϑ′1 = (id′a, α

′, id′), be the body
of an invariant, σ = 〈ϑ1, t1, . . . , ϑn〉, with n > 0 and ϑ1 = (ida, α, id), be a
normalized visible trace, q̂ = [q1, q2] ∈ IIR+ be timed interval, and t ∈ IR+.
Formally, we define M’(σ, μ, q̂, t) as

{
false if t > q2 ∨ n = 1 ∨ (ida = id′a ∧ t �∈ q̂)
Match(σ, μ) if ida = id′a ∧ t ∈ q̂
M’(〈ϑ2, t2, . . . , ϑn〉, μ, [q1, q2], t+ t1) if t ≤ q2 ∧ ida �= id′a

Let φ be a local invariant and σ = 〈ϑ1, t1, . . . , ϑn〉 be a trace. We say that σ
is inconclusive with respect to φ if ∀σ′ ∈ σ<< we have that Match(σ′, Body(φ))
does not hold. Let O � q̂ = Consequent(φ), we say that σ is correct with respect
to φ if ∀σ′ = 〈ϑb, tb, . . . , ϑr〉 ∈ σ<<, with 1 ≤ b < r ≤ n, if Match(σ′, Body(φ))
then we have that ϑr ∈ O and TT(〈ϑ1, t1, . . . , ϑr〉) ∈ q̂.

We say that σ is not correct with respect to φ if ∃σ′ = 〈ϑb, tb, . . . , ϑr〉 ∈
σ<<, with 1 ≤ b < r ≤ n, if Match(σ′, Body(φ)) then we have that ϑr �∈ O or
TT(〈ϑ1, t1, . . . , ϑr〉) �∈ q̂.

We denote by σ � φ the fact that σ is correct with respect to φ, alternatively
σ¬ � φ denotes that is erroneous. ��

Next, we will illustrate the semantics of a local invariant by using an example.
Let φ = id, α, id′/p̂, �/p̂�, id, α′, id′′/p̂′ �→ O � q̂ be a local invariant. This
property, with respect to a recorded trace, means that if we observe the action α
from id to id′ in a time belonging to the interval p̂, followed by a (possibly empty)
sequence of actions without occurrence of the action α′, then if we observe the
input symbol α′ from id to id′′, and the lapse of time between the performance
of the action α and input α′ belongs to the interval p̂� then the head of the
invariant must hold. This means that α′ must be followed by a triple id-action-
id belonging to the set O with an associated time value belonging to p̂′. The
interval q̂ makes reference to the total time that the system must spend to
perform the whole trace. Let us remark that an invariant can only detect an
error if the body of the invariant, that is the part of the invariant previous to
�→ symbol, matches the log and, either the functional restriction does not match
or any temporal requirement does not match. When an invariant is provided by
a tester, before using it to check the correctness of a log, we may ensure that
this invariant does not contradict what is represented in the specification model,
that is, the invariant has to be correct with respect to the specification.

Definition 8. We say that an invariant φ is correct with respect to a web service
A, being AM the LTS associated with A, if the following two conditions hold:
For all σ ∈ NT(AM) we have both conditions: or σ � φ or σ is inconclusive with
respect to φ, and there exits σ ∈ NT(AM) with σ � φ. ��

Example 4. Let us consider the web services specification presented in Figure ??.
Next we show how we can express some properties with timed invariants for the

φE1 =
E, !Connect, A[0, 39],
E, ?Hello, G[0,∞]

�→ {(E, !Coffee, M)} � [0,∞]

φE2 = E, !Connect, A[0, 39], �→ {(E, ?Hello, G)} � [0, 39]

φE3 =
E, !Connect, A[41,∞],
E, ?Hello, G[0,∞]

�→ {(E, !Tea, M)} � [41,∞]

φE4 = E, !Connect, A[41,∞], �→ {(E, ?Hello, G)} � [41,∞]

φE5 =
E, !Connect, A[0,∞],
E, ?Hello, G[0,∞]

�→
{

(E, !Tea, M)
(E, !Coffee, M)

}
� [0,∞]

Fig. 4. Local invariants suite for web service E.

web service E. Let us denote that following the same pattern presented for E, it
is easy to produce the invariants suites for the rest of web services.

The first invariant, by means φE1, means that on the one hand always that
E receives Connect from A, followed by a time value less than or equal to 39
time units, then after sending Hello to the web service G, it will always receive
Coffee from M; and on the other hand, that the sum of all time values, from
Connect to Coffee is included in [0,∞].

Another example is the invariant φE2. It computes on the one hand that
always that E receives Connect from A, followed by a time value less than or
equal to 39 time units, then it will send Hello to the web service G, and on
the other hand, that the sum of time values from Connect, to Hello belongs to
[0,39].

Let us remark that just in the case of φE5, there are more than one item in
the last set. This mean that the web service is allowed to perform any of these
actions after matching its body. ��

3.2 Global Invariants

Taking into account the monitoring structure presented in Figure ??, usually we
cannot assume that we have access to the global log. However, we would like to
represent some properties involving more than one web service. We call a global
log, as a log recorded in a centralized web service, where all actions are marked
with the same time-stamp clock, thus there are not measure errors. In this case
choreographies help us to check the correctness of these logs, due to the fact that
they have a global clock and we can define properties as “local invariants” for

M.LOG= 〈 A.!Connect,41 C.?Good Morning, 36.1, E.?Tea, 〉
E.LOG= 〈 A.!Connect,40.2 G.?Hello, 36, M.!Tea, 〉
C.LOG= 〈 A.!Connect,39.8 M.!Good Morning, 50.3, G.?Thank you, 〉
G.LOG= 〈 A.!Connect, 39.9 E.!Hello, 50.2, C.!Thank you, 〉

Fig. 5. Set of local logs recorded in the web services M, E, C and G.

the choreography. In our approach we do not consider to have this global log,
thus we introduce the notion of global invariants, which will help us to represent
properties that involve many isolated local logs.

Let us present with our running example, an error produced in local logs
that cannot be detected with local invariants. Let us consider the logs presented
in the Figure ??. As we can observe, all of them start with the synchronization
input Connect from the web service A. After 40 time units the web services M
and E send Good Morning to C and Hello to G(locally 41 time units in M and
40.2 time units in E). It could be possible that the clocks of the web services
C, and G work slower than the one presented in M and E; thus, they receive this
inputs on 39.8 and on 39.9. After that the web service M communicates with the
web service E and the web service C with respect to the web service G. As we
can observe, taking into account the choreography of our web services, presented
in Figure ??. This is not a correct situation of the local logs. The idea is that
some web services perform the actions from s6 to s8, and the others perform the
actions from s6 to s10. But, as we do not have a global log, only by checking
the local behaviours we are unable to see that the set of logs represents an
incompatible state.

To solve this problem, first we will define a global log, just adding one local
log after another local log. The idea is to be able to represent properties over
this global log, which help us to detect this kind of errors.

Definition 9. Let σ1 = 〈ϑ11, . . . , ϑ1n〉, . . . , σj = 〈ϑj1, . . . , ϑjm〉 be j local logs
recorded from j different services. We will define a global log as the concate-
nation of these logs, that is σ = 〈ϑ11, . . . , ϑ1n, 0, . . . , 0, ϑ

j
1, . . . , ϑ

j
m〉. We let πid(σ)

denote the projection of σ on a web service identifier id.
Let ϑ = (id′a, α, id) be an item of a visible trace, and ida be a web service

identifier. We define the following boolean function: cmp(ϑ, ida) = (id′a = ida).
Let σ = 〈ϑ1, . . . , ϑn〉 be a global log, and ida be a web service identifier. Formally,
the projection is defined as:

πida(σ) =

⎧⎪⎪⎨
⎪⎪⎩

〈〉 if n = 1 ∧ ¬cmp(ϑ1, ida)
〈ϑ1〉 if n = 1 ∧ cmp(ϑ1, ida)
πida(〈ϑ2, . . . , ϑn〉) if ¬cmp(ϑ1, ida)
〈ϑ1, t1, 〉πida(〈ϑ2, . . . , ϑn〉) if cmp(ϑ1, ida)

Given two normalized visible traces σ1, σ2, we write σ1 ∼ σ2 if σ1 and σ2
cannot be distinguished when making local observations, that is, we have that
πid(σ1) = πid(σ2) for all id ∈ ID. ��

In our framework we assume that testers can combine the set of local logs
taking into account any criterion. It is easy to proof that any two of them σi
and σj are σi ∼ σj . Following, we will define the notion of global invariants, and
the correctness of global logs with respect to them.

Definition 10. Let D = (S, Σ, ID, s0, {x},Z, T) be a choreography. We say
that the sequence ψ is a global invariant for D, where ψ is defined according to
the following EBNF:

ψ ::= SET1 �→h SET2

In this expression we consider that h ∈ {(1, 1), (1,+), (+,+), (+, 1)}, and
SET1, SET2 ⊆ ΦID. Let ψ = SET1 �→h SET2 be a global invariant, we will
define the functions SET1(ψ) = SET1 and SET2(ψ) = SET2. Let σ be a global log.
We will formally define the semantic of Correct, Incorrect (C/I) or Inconclusive:

h Verdict Condition
{1, 1} C/I ∃φα ∈ SET1(ψ) : πα(σ) � φα → ∃φβ ∈ SET2(ψ) : πβ(σ) � φβ
{1, 1} Inconclusive � ∃φα ∈ SET1(ψ) : πα(σ) � φα
{1,+} C/I ∃φα ∈ SET1(ψ) : πα(σ) � φα → ∀φβ ∈ SET2(ψ) : πβ(σ) � φβ
{1,+} Inconclusive � ∃φα ∈ SET1(ψ) : πα(σ) � φα
{+, 1} C/I ∀φα ∈ SET1(ψ) : πα(σ) � φα → ∃φβ ∈ SET2(ψ) : πβ(σ) � φβ
{+, 1} Inconclusive ∃φα ∈ SET1(ψ) such that πα(σ)¬ � φα
{+,+} C/I ∀φα ∈ SET1(ψ) : πα(σ) � φα → ∀φβ ∈ SET2(ψ) : πβ(σ) � φβ
{+,+} Inconclusive ∃φα ∈ SET1(ψ) such that πα(σ)¬ � φα

The symbol � used to represent the correctness is overloaded, we will denote
by σ � ψ that σ is correct with respect to ψ. ��

Next, we define the correctness of global invariants with respect to both,
the orchestration models and the choreography model. Let us remark that we
are not allowed with any global clock for checking the temporal restrictions with
respect to the choreography. So, on the one hand, we might check the correctness
of the time restrictions of the global invariant against the web services and, on
the other hand, we might check that the global invariant does not contradict the
choreography.

Definition 11. Let ψ = SET1 �→h SET2 be a global invariant, and D =
(S, Σ, ID, s0, {x},Z, T) be a choreography. We say that ψ is correct if for all
tr ∈ NT(D) we have that:

– Or tr �ψ or tr is inconclusive with respect to ψ, and there exists at least one
tr that tr � ψ.

– For all φα ∈ SET1 ∪ SET2 we have that φα is correct with respect to α.

��

We conclude this section with the proposed problem of our running example.
Let us summarize all information that we have, present the problem, and show
the solution. We are provided with a set of web services, defined in Figure ??,

ψ =

⎧⎪⎪⎨
⎪⎪⎩

(M, !Connect, A)/[40,∞]
(M, ?Good Morning, C)/[0,∞]

�→ {(M, ?Tea, E)} � [40,∞],

(E, !Connect, A)/[40,∞]
(E, ?Hello, G)/[0,∞]

�→ {(E, !Tea, M)} � [40,∞]

⎫⎪⎪⎬
⎪⎪⎭
�→(+,+)

⎧⎪⎪⎨
⎪⎪⎩

(C, !Connect, A)/[40,∞]
(C, !Good Morning, M)/[0,∞]

�→ {(C, ?Good Bye, G)} � [40,∞],

(G, !Connect, A)/[40,∞]
(G, !Hello, E)/[0,∞]

�→ {(G, !Good Bye, C)} � [40,∞]

⎫⎪⎪⎬
⎪⎪⎭

Fig. 6. Choreography of C, E, G and M.

which are modeled by using an adaptation of timed automata. For this set of
web services, we have defined a choreography, also modeled by using a timed
automata, and presented in Figure ??. We have introduced a set of local invari-
ants to check the correctness of the web services, see Figure ??. Due to the fact
we do not have a global clock, we cannot assume that all internal clocks of the
web services work properly. Thus, we could have that some of them work faster
than the others. This situation could produce the set of local logs presented in
Figure ??. As we discussed, with only local invariants we are not allowed to
decide that this set of logs is incorrect. With the use of global invariants, we can
detect this fault. Let us consider the global invariant presented in Figure ??.
When we check the correctness of the set of logs of the Figure ?? with respect
to this invariant, we detect an error on them. Thus, we are able to detect an
unexpected behaviour in the composition of these web services.

4 Conclusions and Future Work

In this work we have presented a formal framework to perform passive testing
of distributed systems taking into account time information. We assume that we
are provided with a formal specification of both the web services, and the interac-
tion between them. These specifications are modeled by an adaptation of the well
known timed automaton model. One contribution of this paper is to define (lo-
cal)invariants for web services. A (local) invariant represents testing-properties,
expresses by using input and outputs actions, for checking the correctness of the
recorded traces (i.e, logs) of the system.

Another contribution of this paper is to discuss about some errors that are
never detected only using local invariants. These errors are based into the idea
that each web service has got its own set of local clock, and they do not share
these clocks, it means, some of them can be faster that the others. Regarding, in
our work we assume that we are not provided with a global clock. This scenario
can produce erroneous undetectable situations using only sets of local invariants.

The last contribution of this paper is to provide a way to define (global)
invariants for a set of web services without having a global clock. To finalize,
we discuss that these invariants allow us to detect class of errors that we were
unable to detect only using local invariants. As future work, we would like to
upgrade our PASsive TEsting tool1 with this methodology. On the one hand,
we will implement the algorithms of checking the correctness of local and global
invariants with respect to web services and choreography; and on the other hand

1 (https://kimba.mat.ucm.es/paste)

https://kimba.mat.ucm.es/paste

algorithms for checking the correctness of logs with respect to local and global
invariants.

Acknowledgments

We would like to thank the reviewers of this paper for the careful reading. The
quality of the paper has notably increased by considering their useful comments
and suggestions.

References

1. Eviware - soapUI: the Web Services Testing tool, 2010.
2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,

126:183–235, 1994.
3. C. Andrés, M.E. Cambronero, and M. Núñez. Formal passive testing of

service-oriented systems. In 7th Int. Conf. on Services Computing, SCC’10.
IEEE Computer Society Press (in press), 2010. This paper is available at:
http://kimba.mat.ucm.es/cesar/sccv4pp.pdf.

4. C. Andrés, M.G. Merayo, and M. Núñez. Passive testing of timed systems. In 6th
Int. Symposium on Automated Technology for Verification and Analysis, ATVA’08,
LNCS 5311, pages 418–427. Springer, 2008.

5. C. Andrés, M.G. Merayo, and M. Núñez. Supporting the extraction of timed
properties for passive testing by using probabilistic user models. In 9th Int. Conf.
on Quality Software, QSIC’09, pages 145–154. IEEE Computer Society Press, 2009.

6. C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini. Towards automated wsdl-
based testing of web services. In 6th Int. Conf. on Service-Oriented Computing,
ICSOC’08, LNCS 5634, pages 524–529. Springer, 2008.

7. C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini. WS-TAXI: a WSDL-based
testing tool for web services. In 2nd Int. Conf. on Software Testing, Verification,
and Validation, ICST’09, pages 326–335. IEEE Computer Society Press, 2009.

8. E. Bayse, A. Cavalli, M. Núñez, and F. Zäıdi. A passive testing approach based
on invariants: Application to the WAP. Computer Networks, 48(2):247–266, 2005.

9. A. Benharref, R. Dssouli, M. Serhani, and R. Glitho. Efficient traces’ collection
mechanisms for passive testing of web services. Information & Software Technology,
51(2):362–374, 2009.

10. L. Bentakouk, P. Poizat, and F. Zäıdi. A formal framework for service orchestration
testing based on symbolic transition systems. In Joint 21st IFIP TC6/WG6.1 Int.
Conf. on Testing of Software and Communicating Systems, TestCom’09, and 9th
Int. Workshop on Formal Approaches to Software Testing, FATES’09, LNCS 5826,
pages 16–32, 2009.

11. G. Dı́az and I. Rodŕıguez. Automatically deriving choreography-conforming sys-
tems of services. In 6th IEEE Int. Conf. on Services Computing, SCC’09, pages
9–16. IEEE Computer Society Press, 2009.

12. L. Frantzen, M. Las Nieves Huerta, Z.G. Kiss, and T. Wallet. On-the-fly model-
based testing of web services with jambition. In 5th Int. Workshop on Web Services
and Formal Methods, WS-FM’08, LNCS 5387, pages 143–157. Springer, 2008.

13. M.G. Merayo, M. Núñez, and I. Rodŕıguez. Formal testing from timed finite state
machines. Computer Networks, 52(2):432–460, 2008.

http://kimba.mat.ucm.es/cesar/sccv4pp.pdf

14. F. Raimondi, J. Skene, and W. Emmerich. Efficient online monitoring of web-
service SLAs. In 16th ACM SIGSOFT Int. Symposium on Foundations of Software
Engineering, FSE’08, pages 170–180. ACM Press, 2008.

15. J. Skene, A. Skene, J. Crampton, and W. Emmerich. The monitorability of service-
level agreements for application-service provision. In 6th Int. Workshop on Software
and Performance, WOSP’07, pages 3–14. ACM Press, 2007.

16. V. Valero, M.E. Cambronero, G. Dı́az, and H. Macià. A Petri net approach for the
design and analysis of web services choreographies. Journal of Logic and Algebraic
Programming, 78(6):359–380, 2009.

17. Y. Wang, M.Ü. Uyar, S.S. Batth, and M.A. Fecko. Fault masking by multiple
timing faults in timed EFSM models. Computer Networks, 53(5):596–612, 2009.

18. S. Weerawarana, R. Chinnici, M. Gudgin, F. Curbera, and G. Meredith. Web
services description language (WSDL), 2004. Version 2.0, 1.

