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Abstract. In this paper we introduce a formal framework to test sys-
tems where non-deterministic decisions are probabilistically quantified
and temporal information is defined by using random variables. We de-
fine an appropriate extension of the classical finite state machines for-
malism, widely used in formal testing approaches, to define the systems
that we are interested in. First, we define a conformance relation to es-
tablish, with respect to a given specification, what a good implementation
is. In order to decide whether a system is conforming, we apply different
statistic techniques to determine whether the (unknown) probabilities
and random variables governing the behaviour of the implementation
match the (known) ones of the specification. Next, we introduce a no-
tion of test case. Finally, we give an alternative characterization of the
previous conformance relation based on how a set of test is passed by
the implementation.

1 Introduction

Formal testing techniques [20,28,5,31] allow to test the correctness of a system
with respect to a specification. Formal testing originally targeted the functional
behavior of systems, such as determining whether the tested system can, on the
one hand, perform certain actions and, on the other hand, does not perform some
non-expected ones. However, many systems require to deal with non-functional
properties such as probabilities or time. On the one hand, the number of systems
that incorporate nondeterminism and probabilistic behavior in order to ensure
fairness and robustness in communication protocols is increasing. Some of them
such as Ethernet and IEEE 802.11 have long been deployed in real networks
where the exponential back-off algorithm works in a nondeterministic way. Some
security protocols such as non-repudiation protocols have been proposed where
the key for decrypting a message already sent is delivered with a given probability
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to ensure the fairness of the protocol [24]. On the other hand, the temporal
behavior is critical for developing useful models of real-time systems. In fact,
there are several proposals that allow to explicitly represent the probability
of performing a certain task [19,10,9,7,27] as well as the time consumed by the
system while performing tasks, being it either given by fix amounts of time [30,26]
or defined in probabilistic/stochastic terms [15,3,21,4].

In this paper we use a suitable extension of the well known finite state ma-
chine formalism (FSM), Probabilistic-Stochastic Finite State Machine (PSFSM)
introduced in [13], that allows to express in a natural way both probabilistic
and temporal aspects. The probabilities allow to quantify the non-deterministic
choices that a system may undertake. We consider a variant of the reactive
interpretation of probabilities (see for example [19]). Intuitively, a reactive inter-
pretation imposes a probabilistic relation among transitions labelled by the same
action but choices between different actions are not quantified. In our setting we
are able to express probabilistic relations between transitions outgoing from a
state and having the same input action (the output may vary). The stochas-
tic information represents the time consumed between the input is applied and
the output is received and it will be given by random variables. The main idea
is that time information is incremented with some kind of probabilistic infor-
mation. That is, instead of having expressions such as “the message a will be
received in t units of time” we will have expressions such as “the message a is
expected to be received with probability 1

2 in the interval (0, 1], with probability
1
4 in (1, 2], and so on”.

There has been a lot of work to test the functional correctness of nondeter-
ministic FSMs with respect to input/output sequences [11,23,29,17]. More recently
models with probabilities have been studied [2,12,19,33,8,22] while some of them
also include time information [18,34,25]. Nevertheless, there have been relatively
few studies on testing whether the probabilities and stochastic information of
a system is correctly implemented with respect to its specification. Implemen-
tation relations to assess conformance based on the observed executions of the
implementation have been proposed in [22,25,14].

In this paper, we propose a methodology to test whether the probabilities
and random variables of the transitions are correctly implemented. We might re-
quire that any transition of the implementation must have the same associated
probability and delay, that is, an identically distributed random variable. Even
though this is a very reasonable notion to define correctness, if we assume a
black-box testing framework then we do not know the internal details of the im-
plementations. So, we cannot check whether the corresponding random variables
are identically distributed or the probabilities are equal to the ones established
in the specification. In fact, we would need an infinite number of observations to
assure it. Thus, we give a more realistic method based on a finite set of observa-
tions. The idea will be to check that the observed outputs and execution times
in the implementation, fit the probabilities and random variables, respectively,
established in the specification. This notion of fitting will be given by means of
interval estimation (probabilities) and hypothesis contrasts (stochastic time).



In this paper we introduce a notion of test and how to test implementations
that can be represented by using our notion of finite state machine. In addition,
we provide an algorithm that derives test suites from specifications. The main
result of our paper indicates that these test suites have the same distinguishing
power as the two conformance relations presented, in the sense that an imple-
mentation successfully passes a test suite iff it is conforming to the specification.
Since the testing methodology is based on a finite set of observations, a test
verdict is assigned with a given confidence level. When we test probabilities us-
ing interval estimation, different levels of quality of testing can be provided by
choosing the confidence level and confidence interval length.

The rest of the paper is structured as follows. In Section 2, we define a PSFSM

and notations related to testing. In Section 3 we give our conformance relations.
In Section 4 we formally define a notion of test, as well as the application of
tests to implementations and two notions of successfully passing a test suite.
A test generation method for testing from PSFSMs is presented in Section 5. In
Section 6, the basic ideas behind testing of probabilities using interval estimation
and checking random variables by means of hypothesis contrast are introduced.
Finally, in Section 7 we present our conclusions.

2 Preliminaries

In this section we extend the finite state machine formalism in order to deal
with probabilities and stochastic time. On the one hand, probabilities attached
to the transitions allow us to quantify the non-determinism of the system. On
the other hand, stochastic time, represented by means of random variables, let
us model the time that outputs take to be executed. We will consider that the
domain of random variables is a set of numeric time values Time. Since this is
a generic time domain, the specifier can choose whether the system will use a
discrete/continuous time domain. We simply assume that 0 ∈ Time.

In addition, we denote by C∗ the set of all finite sequences with elements in
C, c̄ denotes a sequence with length greater than 0 while ε denotes the empty
sequence. Following, we introduce some basic concepts that will be used along
the paper.

Definition 1. We denote by V the set of random variables (ξ, ψ, . . . range over
V). Let ξ be a random variable. We define its probability distribution function as
the function Fξ : Time −→ [0, 1] such that Fξ(x) = P (ξ ≤ x), where P (ξ ≤ x)
is the probability that ξ assumes values less than or equal to x. Let ξ, ξ′ ∈ V be
random variables. We write ξ = ξ′ if for any x ∈ Time we have Fξ(x) = Fξ′(x).
We will denote by θ the random variable which probability distribution function
is defined by F (x) = 1 for all x ∈ Time.

Given two random variables ξ and ψ we consider that ξ+ψ denotes a random
variable distributed as the addition of the two random variables ξ and ψ.

We will use the delimiters {| and |} to denote multisets. Given a set E, we
denote by ℘(E) the multisets of elements belonging to E.



A Probabilistic-Stochastic Finite State Machine is a non-deterministic finite
state machine in which every transition has associated both a probability and a
random variable. As we said before, the latter represents the expected distribu-
tion of times to execute the transition.

Definition 2. A Probabilistic Stochastic Finite State Machine, in short PSFSM,
is a tuple M = (S, s0, Li, Lo, PT , PV) where S is a finite set of states, with s0 ∈ S
being the initial state, Li and Lo denote the finite input and output alphabets,
respectively, PT : S × Li× Lo× S → [0, 1] is the probability-transition function
and PV : S × Li × Lo, S) → V the time function. For all s ∈ S and a ∈ Li,
∑

p∈PT (s,a,x,s′) p = 1. For all (s, a, x, s′) ∈ S×Li×Lo×S if PT (s, a, x, s′) = p > 0

and PV(s, a, x, s′) = ξ then (s, a, x, p, ξ, s′) is a transition of M .
M is observable if for every state s, input a and output x there is at most one

transition leaving s with input a and output x. PSFSM M is completely specified
if for every state s and input a there exists at least one transition outgoing from
s and labelled with input a. M is said to be initially connected if every state is
reachable from the initial state.

Intuitively, a transition (s, a, x, p, ξ, s′) indicates that if the machine is in
state s and receives the input a then with probability p the machine emits the
output x and it moves to state s′ before time t with probability Fξ(t).

We do not allow that a PSFSM has two transitions with the same initial and
final states s, s′ and the same input/output a/x. Let us note that this condition
does not really limit the behaviors that we can define. If we consider two different
transitions, (s, a, x, p1, ξ1, s

′) and (s, a, x, p2, ξ2, s
′), they have the same meaning

that the one provided by a unique transition (s, x, y, p, ξ, s′) where p = p1 + p2

and ξ = p1

p · ξ1 + p2

p · ξ2.
Let us remark that non-deterministic choices will be resolved before the

timers indicated by random variables start counting, that is, we follow a pre-
selection policy. Thus, if we have several transitions, outgoing from a state s,
associated with the same input a, and the system receives this input, then the
system at time 0 will choose which one of them to perform according to the
probabilities. So, we do not have a race between the different timers to decide
which one is faster. In order to avoid side-effects, we will assume that all the
random variables appearing in the definition of a PSFSM are independent. Let us
note that this condition does not restrict the distributions to be used. In par-
ticular, there can be random variables identically distributed even though they
are independent.

In this paper, we assume that both implementation and specification can
be modeled by observable PSFSMs with the same input alphabet, completely
specified and initially connected. If a PSFSM is not completely specified, it is
possible to transform it to a completely specified PSFSM by adding a self-loop
transitions for each missing input with an empty output. If the specification is not
initially connected, we can consider only a sub-machine which consists of states
and transitions reachable from the initial state of the system. It is also assumed
that there is an upper bound on the number of states of the implementation.



s1 s2

s4 s3

a/z/ 1
3/ξ31

a/y/ 1
3 /ξ32

a/z/1/ξ11

b/x/ 1
2/ξ21

a/z/1/ξ33

b/y/1ξ22

b/z/1/ξ12b/x/1/ξ23

a/y/1/ξ13

a/x/ 1
3 /ξ14

b/y/ 1
2 /ξ34

Fξ1i
(x) =







0 if x ≤ 0
x
5

if 0 < x < 5

1 if x ≥ 5
for all 1 ≤ i ≤ 4.

Fξ2i
(x) =

{

0 if x < 4
1 if x ≥ 4

for all 1 ≤ i ≤ 3.

Fξ3i
(x) =

{

1 − e−2·x if x ≥ 0
0 if x < 0

for all 1 ≤ i ≤ 4.

Fig. 1. Example of Probabilistic Stochastic Finite State Machine.

Example 1. Let us consider the machine depicted in Figure 1. Each transition
has associated a probability and a random variable. In the following we explain
how these random variables are distributed. Let us consider that the random
variables ξ1i are uniformly distributed in the interval [0, 5]. Uniform distributions
assign equal probability to all the times in the interval. The random variable ξ2i

follow a Dirac distribution in 4. The idea is that the corresponding delay will be
equal to 4 time units. Finally, ξ3i are exponentially distributed with parameter
2.

Let us consider the transition (s1, a, x,
1
3 , ξ14, s2). Intuitively, if the machine

is in state s1 and receives the input a then it will produce the output x with
probability 1

3 after a time given by ξ14. For example, we know that this time
will be less than 1 time unit with probability 1

5 , it will be less than 3 time units
with probability 3

5 , and so on. Finally, once 5 time units have passed we know
that the output x has been performed (that is, we have probability 1).

The functions PT and PV can be extended to P ∗
T and P ∗

V
respectively to be

applied to input and output sequences.

Definition 3. Let M = (S, s0, Li, Lo, PT , PV) be a PSFSM. Let ā/x̄ be an in-
put/output sequence and s ∈ S. We define the probability of reaching state s′

from s with ā/x̄ as:

P ∗

T (s, ε, x, s′) =







1 if x = ε ∧ s′ = s

0 otherwise

P ∗

T (s, āa, x̄x, s′) =















P ∗

T (s, ā, x̄, s′′) · PT (s′′, a, x, s′) if ∃ s′′ ∈ S : PT (s′′, a, x, s′) > 0
∧

PT (s, ā, x̄, s′′) > 0
0 otherwise



The random variable that defines the time that the system takes to reach the
state s′ from s performing the output sequence x̄ if it receives the input sequence
ā is given by:

P ∗

V(s, ε, x, s′) = θ

P ∗

V(s, āa, x̄x, s′) =















P ∗

V(s, ā, x̄, s′′) + PV(s′′, a, x, s′) if ∃ s′′ ∈ S : PT (s′′, a, x, s′) > 0
∧

PT (s, ā, x̄, s′′) > 0
θ otherwise

In a slight abuse of notation P ∗
T (s, ā, x̄) denotes the probability that M pro-

duces output sequence x̄ when it receives input sequence ā when in state s. In
the same way, P ∗

V(s, ā, x̄) denotes the random variable that defines the time that
M takes to produce the output sequence x̄ when it receives input sequence ā
when in state s.

Next, we introduce the notion of trace. As usual, a trace is a sequence of
input/output pairs. In addition, we have to record the time that the trace needs
to be performed. An evolution is a trace starting at the initial state of the
machine.

Definition 4. Let M = (S, s0, Li, Lo, T, PT , PV) be a PSFSM. We say that a
tuple (s, s′, (i1/o1, . . . , ir/or), ξ) is a timed trace, or simply trace, of M if there
exist (s, s1, i1, o1, ξ1),. . ., (sr−1, s

′, ir, or, ξr) ∈ T , such that ξ =
∑

ξi.
We say that (i1/o1, . . . , ir/or) is a non-timed evolution, or simply evolution,

of M if we have that (s0, s
′, (i1/o1, . . . , ir/or), ξ) is a trace of M . We denote by

NTEvol(M) the set of non-timed evolutions of M .
We say that the pair ((i1/o1, . . . , ir/or), ξ) is a timed evolution of M if we

have that (s0, s
′, (i1/o1, . . . , ir/or), ξ) is a trace of M . We denote by TEvol(M)

the set of timed evolutions of M . ⊓⊔

Traces are defined as sequences of transitions. The random variable associated
with the trace is computed from the corresponding to each transition belonging
to the sequence. In fact, this random variables is obtained by adding the time
values associated with each of the transitions conforming the trace.

3 Conformance relations for PSFSMs

In order to test against a specification it is necessary to say what it means for
the implementation to conform to the specification. In our framework we need
to consider two different levels of conformance: functional and temporal. The
former only takes into account functional aspects of the system while the per-
formance of the system, that is, the time that the system takes to perform the
actions is ignored. The fact that we consider a black box framework avoid us



to see the probabilities and the random variables assigned to the transitions in
the implementation under test. In order to estimate the probabilities associated
with each choice of the implementation we will consider a set of observations. By
collecting the observations of the implementation the probabilities will be esti-
mated by an interval with a certain level of confidence, which is called confidence
interval, and compared with the corresponding probabilities of the specification.
We define a notion of functional conformance by following the ideas underly-
ing our methodology. Intuitively, we do not request that the probabilities of the
implementation be equal to the corresponding in the specification but that this
fact happens up to a certain probability.

In addition to requiring this notion of functional conformance, we have to ask
for some conditions on delays. As we have indicated, we are not able to check
whether the random variables are indeed identically distributed. Thus, we give a
notion of temporal conformance based on finite sets of observations. This relation
takes into account the observations that we may get from the implementation.
We will collect a sample of time values and we will compare this sample with the
random variables appearing in the specification. By comparison we mean that
we will apply a hypothesis contrast to decide, with a certain confidence, whether
the sample could be generated by the corresponding random variable.

Definition 5. Let M be a PSFSM. We say that (σ̄, t), with σ̄ = a1/x1, . . . , an/xn,
is an observed time execution of M , or simply time execution, if the observation
of M shows that the time elapsed between the acceptance of the input a1 and the
observation of the output xn is t units of time.

Let Φ = {σ̄1, . . . , σ̄m} and let H = {|(σ̄′
1, t1), . . . , (σ̄

′
n, tn)|} be a multiset of

timed executions. We say that Sampling(H,Φ) : Φ −→ ℘(Time) is a sampling
application of H for Φ if Sampling(H,Φ)(σ̄) = {|t | (σ̄, t) ∈ H |}, for all σ̄ ∈ Φ.

We say that SeqSampling(H,Φ) : Φ −→ ℘(Φ) is a sequence sampling applica-

tion of H for Φ if SeqSampling(H,Φ)(ā/x̄) = {|σ̄ | (σ̄, t) ∈ H ∧ σ̄ = ā/x̄′|}, for all
ā/x̄ ∈ Φ.

Let ξ be a random variable and H be a a multiset of timed executions. We
denote by γ(ξ,H) the confidence of ξ on H. Let 0 < α < 1. We denote by
CIα(H) the confidence interval from H with confidence level α.

In the previous definition, a sample simply contains an observation of values.
In our setting, samples will be associated with the time values that implementa-
tions take to perform sequences of actions. Regarding the definition of sampling
applications, on the one hand, we assign to each sequence the total observed
time corresponding to the whole execution; on the other hand, the sequence
sampling application assign to each input sequence the set of output sequences
observed. Let us note that γ(ξ,H) takes values in the interval [0, 1]. Intuitively,
bigger values of γ(ξ,H) indicate that the observed sample H is more likely to be
produced by the random variable ξ. That is, this function decides how similar
the probability distribution function generated by H and the one corresponding
to the random variable ξ are. Finally, let us note that the confidence interval
length depends on the sample size and α. Larger sample size results in shorter



confidence interval, which means that we can estimate the probability from the
sample H . Higher values of α result in larger confidence interval and we can have
higher possibility that the actual probability lies within the obtained confidence
interval.

Definition 6. Let M and M ′ be PSFSMs, H be a multiset of timed executions of
M ′, 0 < α < 1, Φ = {σ̄ | ∃ t : (σ̄, t) ∈ H}, and let us consider SeqSampling(H,Φ).
We say that M ′ (α,H)-probabilistically conforms to M , denoted by M ′ ⊑p,(α,H)

M if for all σ̄ = ā/x̄ ∈ Φ such that P ∗
T (s0, ā, x̄) > 0 we have

P ∗
T (s0, ā, x̄) ∈ CIα(SeqSampling(H,Φ)(σ̄))

Intuitively the idea is that the probabilities associated to the sequences in the
M ′ are similar enough to the corresponding ones in M . In addition, we require
conditions over the execution times.

Definition 7. Let M and M ′ be PSFSMs, H be a multiset of timed executions of
M ′, 0 ≤ α ≤ 1, Φ = {σ̄ | ∃ t : (σ̄, t) ∈ H}, and let us consider Sampling(H,Φ). We
say that M ′ is (α,H)-stochastically conformance to M , denoted by M ′ ⊑s,(α,H)

M if for all σ̄ = ā/x̄ ∈ Φ we have

γ
(

P ∗
V
(s0, ā, x̄), Sampling(H,Φ)(σ̄)

)

> α

The implementation M ′ must probabilistically conform to the specification
M . Besides, for all observation, the execution time values fit the random variable
indicated byM . This notion of fitting is given by the function γ that it is formally
defined in the next Section.

4 Definition and application of tests

We consider that tests represent sequences of inputs applied to an implemen-
tation. Once an output is received, the tester checks whether it belongs to the
set of expected ones or not. In the latter case, a fail signal is produced. In the
former case, either a pass signal is emitted (indicating successful termination)
or the testing process continues by applying another input. If we are testing an
implementation with input and output sets LI and LO, respectively, tests are
deterministic acyclic I/O labelled transition systems (i.e. trees) with a strict al-
ternation between an input action and the set of output actions. After an output
action we may find either a leaf or another input action. Leaves can be labelled
either by pass or by fail. In addition, we have to check if the implementation
behaves according to probabilities established in the specification. We have also
to detect whether wrong timed behaviors appear. Thus, tests have to include ca-
pabilities to deal with probabilities and time. On the one hand, tests will include
probabilities. In our proposal, we will estimate the probabilities by applying a
test several times and we will use statistical results to establish the number of
times we need to apply the test to obtaining a required confidence level. On the



other hand, we will include random variables. The idea is that we will record the
time that it takes for the implementation to arrive to that point. We will collect
a sample of times (one for each test execution) and we will compare this sample
with the random variable. By comparison we mean that we will apply a contrast
to decide, with a certain confidence, whether the sample could be generated by
the corresponding random variable.

Definition 8. A test case is a tuple T = (S,LI , LO, λ, s0, SI , SO, SF , SP , ζ, η)
where S is the set of states, I and O, with LI ∩ LO = ∅ are the sets of input
and output actions, respectively, λ ⊆ S ×LI ∪LO ×S is the transition relation,
s0 ∈ S is the initial state, and the sets SI , SO, SF , SP ⊆ S are a partition of S.
The transition relation and the sets of states fulfill the following conditions:

– SI is the set of input states. We have that s0 ∈ SI . For all input state s ∈ SI

there exists a unique outgoing transition (s, a, s′) ∈ λ. For this transition we
have that a ∈ LI and s′ ∈ SO.

– SO is the set of output states. For all output state s ∈ SO we have that for
all o ∈ O there exists a unique state s′ such that (s, o, s′) ∈ λ. In this case,
s′ /∈ SO. Moreover, there do not exist i ∈ LI , s

′ ∈ S such that (s, i, s′) ∈ λ.
– SF and SP are the sets of fail and pass states, respectively. We say that these

states are terminal. Thus, for all state s ∈ SF ∪ SP we have that there do
not exist a ∈ LI ∪ LO and s′ ∈ S such that (s, a, s′) ∈ λ.

Finally, we have two timed functions. ζ : SP −→ V is a function associating
random variables, to compare with the time that took to perform the outputs,
with passing states. η : SP −→ (0, 1] is a function associating probabilities with
passing states.

We say that a test case T is valid if the graph induced by T is a tree with
root at the initial state s0. We say that a set of tests Tst = {T1, . . . , Tn} is a test
suite.

Let σ̄ = i1/o1, . . . , ir/or. We write T
σ̄

=⇒ sT if sT ∈ SF ∪ SP and there
exist states s12, s21, s22, . . . sr1, sr2 ∈ S such that {(s0, i1, s12), (sr2, or, s

T )} ⊆ λ,
for all 2 ≤ j ≤ r we have (sj1, ij , sj2) ∈ λ, and for all 1 ≤ j ≤ r − 1 we have
(sj2, oj , s(j+1)1) ∈ λ. ⊓⊔

Let us remark that T
σ̄

=⇒ sT implies that sT is a terminal state. Next we
define the application of a test suite to an implementation. We say that the test
suite Tst is passed if for all test the terminal states reached by the composition
of implementation and test are pass states.

Definition 9. Let I be PSFSM and T = (St, LI , LO, λT , s0, SI , SO, SF , SP , ζ, η)
be a valid test, σ̄ = i1/o1, . . . , ir/or, s

T be a state of T , and t̄ = (t1, . . . , tr).We

write I ‖ T
σ̄

=⇒ sT if T
σ̄

=⇒ sT and σ̄ ∈ NTEvol(I).

We write I ‖T
σ̄

=⇒t s
T if I ‖T

σ̄
=⇒ sT and (σ̄, t̄) is a observed timed execution

of I. In this case we say that (σ̄, t̄) is a test execution of I and T .
We say that I passes the test suite Tst, denoted by pass(I, Tst), if for all test

T ∈ Tst there do not exist σ̄ ∈ NTEvol(I), sT ∈ S such that I ‖ T
σ̄

=⇒ sT and
sT ∈ SF . ⊓⊔
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Fig. 2. Examples of Test Cases: I = {a, b} and O = {x, y, z}.

Let us remark that since we are assuming that implementations are input-
enabled, the testing process will conclude only when the test reaches either a fail
or a success state.

In addition to this notion of passing tests, we will have probabilistic and time
conditions. We apply these conditions to the set of observed timed executions,
not to evolutions of the implementations. In fact, we need a set of test executions
associated to each evolution to evaluate if they match these conditions. In order
to increase the degree of reliability, we will not take the classical approach where
passing a test suite is defined according only to the results for each test. In our
approach, we will put together all the observations, for each test, so that we have
more samples for each evolution. In particular, some observations will be used
several times. In other words, an observation from a given test may be used to
check the validity of another test sharing the same observed sequence.

Definition 10. Let I be a PSFSM and Tst = {T1, . . . , Tn} be a test suite. Let
H1, . . . , Hn be test execution samples of I and T1, . . . , Tn, respectively. Let H =
⋃n

i=1Hi, Φ = {σ̄ | ∃ t̄ : (σ̄, t̄) ∈ H}, and σ̄ ∈ Φ. We define the set Test(σ̄, Tst) =

{T | T ∈ Tst ∧ I ‖ T
σ̄

=⇒ sT }.
Let us consider 0 < α < 1, Sampling(H,Φ) and SeqSampling(H,Φ). We say

that the implementation I probabilistically (α,H)−passes the test suite Tst if
pass(I, Tst) and for all σ̄ = ā/x̄ ∈ Φ we have that for all T ∈ Test(σ̄, Tst) it
holds η(sT ) ∈ CIα(SeqSampling(H,Φ)(σ̄)).

We say that the implementation I stochastically (α,H)−passes the test suite
Tst if pass(I, Tst) and for all σ̄ ∈ Φ we have that for all T ∈ Test(σ̄, Tst) it holds
γ(ζ(sT ), Sampling(H,Φ)(σ̄)) > α.

Intuitively, an implementation passes a test if there does not exist an evolu-
tion leading to a fail state. Once we know that the functional behavior of the



implementation is correct with respect to the test, we need to check probabilistic
and time conditions. The set H corresponds to the observations of the (several)
applications of the tests belonging to the test suite Tst to I. Thus, we have to de-
cide whether, for each evolution σ̄, the frequency (that is, SeqSampling(H,Φ)(σ̄))
and the observed time values (that is, Sampling(H,Φ)(σ̄)) match the probabilities
and the definition of the random variables appearing in the successful state of
the tests corresponding to the execution of that evolution (that is, η(sT ) and
ζ(sT )).

5 Derivation of Test Suites

In this section we present an algorithm to derive tests from specifications. We will
derive test suites that are sound and complete with respect to the implementa-
tion relations introduced in Section 3. The basic idea underlying test derivation
consists in traversing the specification in order to get all the possible evolutions
in an appropriate way. First, we introduce some additional notation.

Definition 11. Let M = (S, s0, Li, Lo, PT , PV) be a PSFSM. We define the func-
tion out : S × Li −→ ℘(Lo) such that for all s ∈ S and i ∈ I it returns the set
of outputs

out(s, a) = {x | ∃ s′, p, ξ : PT (s, a, x, s′) = p > 0 ∧ PV (s, a, x, s′) = ξ}

We define the function after : S × Li× Lo × V × [0, 1] −→ ((S × V × [0, 1]) ∪
{error}) such that for all s ∈ S, a ∈ Li, x ∈ Lo, p ∈ [0, 1] and ξ ∈ V we have

after(s, a, x, ξ, p) =











(s′, ξ + ξ′, p · p′) if ∃ s′, p′, ξ′ : PT (s, a, x, s′) = p′ > 0 ∧

PV(s, a, x, s′) = ξ′

error otherwise

⊓⊔

The function out(s, a) computes the set of output actions associated with
those transitions that can be executed from s after receiving the input a. The
function after(s, a, x, ξ, p) computes the situation that is reached from a state
s after receiving the input a, producing the output x, when the duration of the
previous testing process is given by ξ with probability p. Let us also remark that
due to the assumption that PSFSMs are observable we have that after(s, a, x, ξ, p)
is uniquely determined. Finally, we will apply this function only when the side
condition holds, that is, we will never receive error as result of applying after.

The algorithm to derive tests from a specification is given in Figure 3. By
considering the possible available choices we get a test suite extracted from the
specification M . We denote this test suite by tests(M).

Next we explain how our algorithm works. A set of pending situations Saux

keeps those tuples denoting the possible states, random variables and probabili-
ties that could appear in a state of the test whose outgoing transitions have not



Input: A specification M = (S, sin, Li, Lo, PT , PV).
Output: A test case T = (S, Li, Lo, λ, s0, SI , SO, SF , SP , ζ, η).

Initialization: S′ := {s0}; Tran′, SI , SO, SF , SP := ∅; Saux := {(sin, θ, 0, s0)}.
Inductive Cases: Choose one of the following two options until Saux = ∅.

1. If (sM , ξ, p, sT ) ∈ Saux then perform the following steps:

(a) Saux := Saux − {(sM , ξ, p, sT )}; SP := SP ∪ {sT }; ζ(sT ) := ξ; η(sT ) := p.

2. If Saux = {(sM , ξ, p, sT )} and ∃ a ∈ Li : out(sM , a) 6= ∅ then perform the following
steps:
(a) Saux := ∅; Choose a such that out(sM , a) 6= ∅.
(b) Consider a fresh state s′ /∈ S′ and let S′ := S′ ∪ {s′}.
(c) SI := SI ∪ {sT }; SO := SO ∪ {s′}; Tran′ := Tran′ ∪ {(sT , a, s′)}.

{Add an input transition labelled by a and consider all outputs}
(d) For all x /∈ out(sM , a) do {These outputs lead to a fail state}

– Consider a fresh state s′′ /∈ S′ and let S′ := S′ ∪ {s′′}.
– SF := SF ∪ {s′′}; Tran′ := Tran′ ∪ {(s′, x, s′′)}.

(e) For all x ∈ out(sM , a) do
{These outputs are expected. At most one of them will lead to an

input state where the test continues; the rest will lead to pass

states}
– Consider a fresh state s′′ /∈ S′ and let S′ := S′ ∪ {s′′}.
– Tran′ := Tran′ ∪ {(s′, x, s′′)}.
– (sM

1 , ξ′, p′) := after(sM , a, x, ξ, p); Saux := Saux ∪ {(sM
1 , ξ′, p′, s′′)}.

Fig. 3. Derivation of tests from an observable specification.

been completed yet. More precisely, a tuple (sM , ξ, p, sT ) ∈ Saux indicates that
we did not complete the state sT of the test, the current state in the traversal
of the specification is sM , and the accounting for the elapsed duration in the
specification from the initial state is given by ξ. In addition, p reflects the proba-
bility associated to the transitions traversed in the specification for reaching the
current state.

Following with the explanation of the algorithm, the set Saux initially con-
tains a tuple with the initial states (of both specification and test) and the initial
situation of the process, that is, duration θ and probability 0. For each tuple be-
longing to Saux we may choose one possibility. It is important to remark that
the second step can be applied only when the set Saux becomes singleton. So,
our derived tests correspond to valid tests as introduced in Definition 8. The
first possibility simply indicates that the state of the test becomes a passing
state. The second possibility takes an input and generates a transition in the
test labelled by this input. Then, the whole sets of outputs is considered. If the
output is not expected by the specification (step 2.(d) of the algorithm) then
a transition leading to a failing state is created. This could be simulated by a
single branch in the test, labelled by else, leading to a failing state (in the al-



gorithm we suppose that all the possible outputs appear in the test). For the
expected outputs (step 2.(e) of the algorithm) we create a transition with the
corresponding output and add the appropriate tuple to the set Saux.

Let us note that finite tests are constructed simply by considering a step
where the second inductive case is not applied. The algorithm provide us with
a test suite extracted from the specification S that we denote by tests(S).

Let us comment on the finiteness of our algorithm. If we do not impose
any restriction on the implementation (e.g. a bound on the number of states)
we cannot determine some important information such as the maximal length
of the traces that the implementation can perform. In other words we would
need a fault coverage criterion to generate a finite test suite. Obviously, one can
impose restrictions such as “generate n tests” or “generate all the tests with m
inputs” and completeness will be obtained up to that coverage criterion. Since
we do not assume, by default, any criteria, all we can do is to say that this is
the, in general, test suite that allows to prove completeness, that is, we obtain
full fault coverage but taking into account that the derived test suite will be, in
general, infinite.

Next, we present the results that relate implementation relations and appli-
cation of test suites derived from a specification. The result holds because the
temporal and probabilistic conditions required to conform to the specification
and to pass the test suite are in fact the same. Due to space limitations, we
cannot include in this paper the proof of the theorem. In spite of the differences,
the proof is an adaptation of that in [25].

Theorem 1. (Soundness and Completeness) Let I and S be PSFSMs, H be a
multiset of timed executions of I, 0 < α < 1. We have that:

– I ⊑p,(α,H) S iff I probabilistically (α,H)−passes tests(S).
– I ⊑s,(α,H) S iff I stochastically (α,H)−passes tests(S).

⊓⊔

The derived test suite is sound and complete, up to a given confidence level
α and for a sample H , with respect to the conformance relations ⊑s,(α,H) and
⊑p,(α,H). Specifically, for a given specification S, the test suite tests(S) can be
used to distinguish those (and only those) implementations that conform with
respect to ⊑s,(α,H) and ⊑p,(α,H). However, we cannot say that the test suite is
complete since both the notion of passing tests and the considered implementa-
tion relations have a probabilistic component. So, we can talk of completeness
up to a certain confidence level.

6 Estimation of probabilities and random variables

When testing from a non-deterministic FSMs, it is necessary to make an assump-
tion: implementations have a fairness property such that if an input sequence
is applied to the implementation a finite number of times, all possible execution



paths in the implementation that can be followed using the input sequence are
traversed. This is the so-called complete-testing assumption. Under this assump-
tion, we need to apply the test sequences a minimum number of times to the
implementation in order to observe all output sequences that can be produced.
In addition, in our approach, we need to estimate the probabilities associated to
each input/output sequence in order to determine if they fulfill the requirements
specified. Moreover, we need to check if the random variables are correctly im-
plemented. In order to do it we collect a set of timed executions corresponding
to the observations of the several applications of the tests belonging to a test
suite to the implementation. Nevertheless, this technique does not allow us to
determine the probabilities and the random variables of the implementation.
We only can estimate the probabilities and decide with a certain confidence,
whether the sample could be generated by the corresponding random variable
in the specification. We use statistical results to establish the number of times
we need to apply the test to obtaining a required confidence level.

6.1 Checking correctness of probabilities

In general, test sequence repetition numbers are neither large enough to satisfy
the complete-testing assumption nor large enough to estimate exact probabili-
ties. In such a case, the testing process is a hypothesis test [32]. When we check
the probability of a given input/output sequence the following two hypotheses
are considered in this paper.

H0 : the probability of the implementation is correct
H1 : the probability of the implementation is not correct.

Let us denote by PEP and PNEF test-pass probability of equivalent machines
and test-fail probability of faulty machines respectively. (1−PEP ) corresponds to
type I error of hypothesis H0 which is the probability that the hypothesis H0 is
rejected when it is true. (1−PNEF ) corresponds to type II error of hypothesis H0

which is the probability that the hypothesisH0 is accepted when it is false. When
we test probabilities using interval estimation, the numbers of test application
will be determined such that PEP and PNEF are not not less than a given value
where the types of faulty machines can be described further in hypothesis H1.

If there are two executable transitions t1 and t2 from a state s when an
input is applied where the transition probabilities are p and 1 − p respectively,
a random variable X defined as follows is a Bernoulli random variable:

{

X = 0 if transition t1 is selected for execution from state s;
X = 1 if transition t2 is selected for execution from state s.

Selecting a transition between t1 and t2 for execution can be considered as
an experiment (or a trial). If Y represents the number of times t1 was selected
after n independent experiments, Y is said to be a binomial random variable
with parameters (n, p). The observed data after n independent experiments is
called a sample where n is the sample size. p can be estimated by an interval



with a certain degree of confidence, which is called the confidence interval, after
n independent experiments. The Agresti-Coull interval [1] which is one of the
recommended intervals by Brown et al. [6] for p with 100(1− α)% confidence is
given by

p̃− κ

√

p̃(1 − p̃)

ñ
≤ p ≤ p̃+ κ

√

p̃(1 − p̃)

ñ

where Ỹ = Y +κ2/2, ñ = n+κ2, p̃ = Ỹ /ñ, and κ is such that P{|Z| ≤ κ} = 1−α
where Z is a standard normal variable. For the case when α=0.05, the value 2
is used instead of 1.96 for κ in the Agresti-Coull interval. If n ≥ 40, the Agresti-
Coull interval provides good coverage even for p very close to 0 or 1 [6].

Suppose that an implementation PSFSMMI has a transition with probability
p′ while the probability in the specification PSFSMM is p. The following criteria
can be used for testing:

{

Pass if p is included in the obtained confidence interval for p′;
Fail otherwise.

Let d denote half of the obtained confidence interval length. According to the
value of p′ we will have the following results. If p′ = p, 100(1− α)% of the time
the implementation will have a pass verdict. When we test probabilities using
interval estimation, therefore, we can ensure that PEP is never less than a given
value, (1 − α). If |p′ − p| > 2d, 100(1 − α/2)% of the time, the implementation
will have a fail verdict and PNEF is ensured to be not less than a given value,
(1−α/2). If 0 < |p′− p| ≤ 2d, we cannot provide any meaningful upper or lower
bound of PNEF as the range is too wide, from α to (1 − α/2) according the
difference between p and p′.

We now explain how to determine test sequence repetition numbers for test-
ing probabilities. Test sequence repetition numbers will be determined so that
PEP and PNEF are ensured to be not less than (1−α) and (1−α/2) respectively
where faulty implementations are such that the difference of the probability is
more than 2d. For correct implementations, ideally, 100(1 − α)% of the time, p
will be contained in any size of confidence interval. Therefore, PEP is indepen-
dent of d and we can always ensure PEP as far as we have a reliable confidence
interval. In order to have PNEF ≥ 1−α/2, the test sequence repetition number
n should satisfy the following condition.

n >
(κ

d

)2

p̂(1 − p̂) − κ2

where

p̂ =

{

p+ d if p ≤ 0.5
p− d otherwise

If there are j probabilities to test in a test sequence ts and there are k test
sequences in a test suite which have at least two probabilities to test, κ should
satisfy the following condition when we test the probabilities of the test sequence.

P{|Z| < κ} =

{

(1 − α)1/k if j = 2

(1 − α)1/(j+k−1) if j > 2



For further details about the determination of test sequence repetition num-
bers for testing probabilities can be found at [16].

6.2 Checking correctness of random variables

Goodness-of-fit tests indicate whether or not it is sensible to assume that a
random sample comes from a specific distribution. Hypothesis Test model for
Goodness-of-fit tests are a form of hypothesis testing where the null and alter-
native hypotheses are

– H0: Sample data come from the stated distribution.
– HA: Sample data do not come from the stated distribution.

The underlying idea is that a sample will be rejected if the probability of
observing that sample from a given random variable is low. In practice, we will
check whether the probability to observe a discrepancy lower than or equal to
the one we have observed is low enough.

Three goodness-of-fit tests are the most frequently used. Chi-square test can
be applied for both continuous and discrete distributions. Kolmogorov-Smirnov
and Anderson-Darling test only can be used for continuous distributions. Due
to the fact that our models may present random variables associated to discrete
and continuous distributions functions, we will present a methodology based on
Chi-square test to measure the confidence degree that a random variable has on
a sample.

The mechanism is the following. Once we have collected a sample of size n
we perform the following steps:

– We split the sample into k classes which cover all the possible range of values.
We denote by Oi the observed frequency at class i (i.e. the number of elements
belonging to the class i).

– We calculate the probability pi of each class, according to the proposed
random variable. We denote by Ei the expected frequency, which is given by
Ei = npi.

– We calculate the discrepancy between observed frequencies and expected

frequencies as X2 =
∑k

i=1
(Oi−Ei)

2

Ei
. When the model is correct, this discrep-

ancy is approximately distributed as a random variable χ2 .
– We estimate the number of freedom degrees of χ2 as k − r − 1. In this case,
r is the number of parameters of the model which have been estimated by
maximal likelihood over the sample to estimate the values of pi (i.e. r = 0
if the model completely specifies the values of pi before the samples are
observed).

– We will accept that the sample follows the proposed random variable if the
probability of obtaining a discrepancy greater or equal to the discrepancy
observed is high enough, that is, ifX2 < χ2

α(k−r−1) for some α high enough.
Actually, as the margin to accept the sample decreases as α increases, we can
obtain a measure of the validity of the sample as max{α|X2 < χ2

α(k−r−1)}.



According to the previous steps, we can now present an operative definition
of the function γ which is used in this paper to compute the confidence of a
random variable on a sample.

Definition 12. Let ξ be a random variable and J be a multiset of real numbers
representing a sample. Let X2 be the discrepancy level of J on ξ calculated as
explained above by splitting the sampling space into k classes

C = {[0, a1), [a1, a2), . . . , [ak−2, ak−1), [ak−1,∞)}

where k is a given constant and for all 1 ≤ i ≤ k − 1 we have P (ξ ≤ ai) =
i
k . We define the confidence of ξ on J with classes C, denoted by γ(ξ, J), as
max{α |X2 < χ2

α(k − 1)}.

The previous definition indicates that in order to perform a contrast hypoth-
esis, we split the collected values in several intervals having the same expected
probability. We compute the value for X2 as previously described and check this
figure with the tabulated tables corresponding to χ2 with k− 1 freedom degrees
(see, for example, www.statsoft.com/textbook/sttable.html).

Let us comment on some important details. First, given the fact that the
random variables that we use in our framework denote the passing of time, we
do not need classes to cover negative values. Thus, we will suppose that the
class containing 0 will also contain all the negative values. Second, the number
of classes and how many data contain each class will affect the power of the
test, that is, how sensitive it is to detecting departures from the null hypothesis.
Power will not only be affected by the number of classes and how they are de-
fined, but by the sample size and shape of the null and underlying distributions.
Some useful rules can be given in order to determine it. When data are discrete,
tabulation can be used to categorize the data. Continuous data present a more
difficult challenge. One defines classes by segmenting the range of possible values
into non-overlapping intervals. Elements can then be defined by the endpoints
of the intervals. In general, power is maximized by choosing endpoints such that
each element is equiprobable, that is, the probabilities associated with an ob-
servation falling into a given class are divided as evenly as possible across the
intervals. A good starting point for choosing the number of classes is to use the
value 2 · n2/5, each of them containing at least 5 elements.

Example 2. Let us consider a device that produces real numbers belonging to the
interval [0, 1]. We would like to test whether the device produces these numbers
randomly, that is, it does not have a number or sets of numbers that have a
higher probability of being produced than others. Thus, we obtain a sample
from the machine and we apply the contrast hypothesis to determine whether
the machine follows a uniform distribution in the interval [0, 1]. First, we have
to decide how many classes we will use. Let us suppose that we take k = 10
classes. Thus, for all 1 ≤ i ≤ 9 we have ai = 0.i and P (ξ ≤ ai) = i

10 . So,
C = {[0, 0.1), [0.1, 0.2) . . . [0.8, 0.9), [0.9,∞)}.



Let us suppose that the multiset of observed values, after we sort them, is:

J =
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Since the sample has 48 elements we have that the expected frequency in
each class, Ei, is equal to 4.8. In contrast, the observed frequencies, Oi, are
4, 3, 7, 4, 4, 3, 7, 6, 5, 5. Next, we have to compute

X2 =

10
∑

i=1

(Oi − Ei)
2

Ei
= 4.08333

Finally, we have to consider the table corresponding to χ2 with 9 degrees of
freedom and find the maximum α such that 4.08333 < χ2

α(9). Since χ2
0.9(9) =

4.16816 and χ2
0.95(9) = 3.32511 we conclude that, with probability at least 0.9,

the machine produces indeed random values.

7 Conclusions

In this paper we have presented a notion of finite state machine to specify, in an
easy way, both probabilities that quantified the non-deterministic choices and
the passing of time due to the performance of actions. In addition, we have pre-
sented two implementation relations based on the notion of conformance. First,
the implementation must conform to the specification regarding functional as-
pects. It requires to take into account the probabilities associated to the transi-
tions in the specification. Second, we require that the implementation complies
with the temporal requirements specified by means of random variables. In order
to check that the implementation fulfills the probabilities and random variables
established in the specification, we apply statistical results. Additionally, we in-
troduce a notion of test, how to apply a test suite to an implementation, and
what is the meaning of successfully passing a test suite. Even though implemen-
tation relations and passing of test suites are, apparently, unrelated concepts,
we provide a link between them: We give an algorithm to derive test suites from
specifications in such a way that a test suite is successfully passed iff the imple-
mentation conforms to the specification. This result, usually known as soundness
and completeness, allows a user to check the correctness of an implementation,
applying a derived test suite.
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