
Implementation relations for the distributed test

architecture�

Robert M. Hierons1, Mercedes G. Merayo1, and Manuel Núñez2

1 Department of Information Systems and Computing, Brunel University
Uxbridge, Middlesex, UB8 3PH United Kingdom, rob.hierons@brunel.ac.uk,

mgmerayo@fdi.ucm.es
2 Universidad Complutense de Madrid, Madrid, Spain, mn@sip.ucm.es

Abstract. Some systems interact with their environment at a number
of physically distributed interfaces called ports. When testing such a
system under test (SUT) it is normal to place a local tester at each
port and the local testers form a local test case. If the local testers
cannot interact with one another and there is no global clock then we are
testing in the distributed test architecture. In this paper we explore the
effect of the distributed test architecture when testing an SUT against
an input output transition system, adapting the ioco implementation
relation to this situation. In addition, we define what it means for a local
test case to be deterministic, showing that we cannot always implement
a deterministic global test case as a deterministic local test case. Finally,
we show how a global test case can be mapped to a local test case.

1 Introduction

If the system under test (SUT) has physically distributed interfaces, called ports,
then in testing we place a tester at each port. If we are applying black-box
testing, these testers cannot communicate with each other, and there is no global
clock then we are testing in the distributed test architecture [1]. It is known
that the use of the distributed test architecture reduces test effectiveness when
testing from a deterministic finite state machine (DFSM) and this topic has
received much attention (see, for example, [2–6]). It is sometimes possible to use
an external network, through which the testers can communicate, to overcome
the problems introduced when testing from a DFSM. However, there are costs
associated with deploying such a network and it is not always possible to run
test cases that have timing constraints [7].

Previous work on testing in the distributed test architecture has focussed on
testing from DFSMs, two effects being identified. First, controllability problems

� This research was carried out while the first author was visiting Universidad Com-
plutense de Madrid under a grant Programa de visitantes distinguidos e investi-
gadores extranjeros en la UCM (Grupo Santander). Research partially supported
by the Spanish MEC project WEST/FAST (TIN2006-15578-C02-01) and the Marie
Curie project MRTN-CT-2003-505121/TAROT.

may occur, where a tester cannot know when to apply an input. Let us suppose,
for example, that a test case starts with input xp at port p, this should lead to
output yp at p only and this is to be followed by input xq at q �= p. The tester
at q cannot know when xp has been applied, since it does not observe either
the input or output from this transition. The second issue is that there may
be observability problems that can lead to fault masking. Let us suppose, for
example, that a test case starts with input xp at p, this is expected to lead to
output yp at p only, this is to be followed by input xp at p and this should lead to
output yp at p and yq at q �= p. The tester at p expects to observe xpypxpyp and
the tester at q expects to observe yq. This is still the case if the SUT produces yp
and yq in response to the first input and yp in response to the second input: Two
faults have masked one another in the sequences used but could lead to failures
in different sequences. Work on testing in the distributed test architecture has
largely concerned finding test sequences without controllability or observability
problems (see, for example, [2–4, 6]) but recent work has characterized the effect
of the distributed test architecture on the ability of testing to distinguish between
a DFSM specification and a DFSM implementation [8].

While DFSMs are appropriate for modelling or specifying several important
classes of system, they are less expressive than input output transition systems
(IOTSs). For example, an IOTS can be nondeterministic and this is potentially
important since distributed systems are often nondeterministic. In addition, in
a DFSM input and output alternate and this need not be the case in IOTS.
This paper investigates the area of testing from an IOTS in the distributed test
architecture. For the sake of clarity, we focus on the case where there are two
ports U and L, but our framework can be easily extended to cope with more
ports. The paper explores the concept of a local test case (tU , tL), in which
tU and tL are local testers at ports U and L respectively, and how we can
assign verdicts. We adapt the well known ioco implementation relation [9, 10]
by defining a new implementation relation dioco and prove that i dioco s for
SUT i and specification s if and only if i can fail a certain test run when testing
in the distributed test architecture. While ioco has been adapted in a number
of ways (see, for example, [11–17]), as far as we know this is the first paper to
define an implementation relation based on ioco for testing from an IOTS in
the distributed test architecture. However, an implementation relation mioco
has been defined for testing from an IOTS with multiple ports when there is a
single tester that controls and observes all of the ports [18].

Interestingly, ioco and dioco are incomparable if we do not require the
specification to be input enabled but otherwise we have that dioco is weaker that
ioco. We define what it means for a local test case (tU , tL) to be deterministic and
show that there are deterministic global test cases that cannot be implemented
using deterministic local test cases. We also show how a global test case t can be
mapped to a local test case that implements t, where this is possible. In effect,
the notion of a local test case being deterministic captures what it means for
a test case to be controllable while dioco describes the ability to distinguish
between processes and so captures observability problems.

This paper is structured as follows. In Section 2 we give preliminary material
and in Section 3 we define local test cases and what it means to pass or fail a
test run. Section 4 gives the new implementation relation dioco and Section 5
defines what it means for a local test case to be deterministic and shows how
given a test case t we can find a local test case that implements t. In Section 6
conclusions are drawn.

2 Preliminaries

In this section we present the main concepts used in the paper. First, we define
input output transition systems and notation to deal with sequences of actions
that can be performed by a system. After that we will comment on the main
differences, with respect to classical testing, when testing in the distributed
architecture.

2.1 Input output transition systems

An input output transition system is a labelled transition system in which we
distinguish between input and output. We use this formalism to define processes.

Definition 1. An input output transition system s, in short IOTS, is defined
by (Q, I,O, T, qin) in which Q is a countable set of states, qin ∈ Q is the initial
state, I is a countable set of inputs, O is a countable set of outputs, and T ⊆
Q× (I ∪O∪{τ})×Q, where τ represents internal (unobservable) actions, is the
transition relation. A transition (q, a, q′) means that from state q it is possible
to move to state q′ with action a ∈ I ∪O ∪ {τ}. We let IOTS(I, O) denote the
set of IOTSs with input set I and output set O.

We say that the state q ∈ Q is quiescent if from q it is not possible to produce
output without first receiving input. We say that the process s is input enabled
if for all q ∈ Q and ?i ∈ I there is some q′ ∈ Q such that (q, ?i, q′) ∈ T . We say
that the process s is output-divergent if it can reach a state in which there is an
infinite loop that contains outputs and internal actions only.

Given action a and process s, a.s denotes the process that performs a and
then becomes s. Given a countable set S of processes,

∑
S denotes the process

that can nondeterministically choose to be any one of the processes in S. Given
processes s1, . . . , sk, we have that s1||s2|| . . . ||sk is the process in which s1, . . . sk
are composed in parallel and interact by synchronizing on common labels.

In this paper we use I for input and O for output rather than I and U , which
are traditionally used in the work on IOTS. This is because U denotes the upper
tester in protocol conformance testing and so, in this paper, U and L are used
to denote ports. In order to distinguish between input and output we usually
precede the name of a label with ? if it is an input and ! if it is an output.
We assume that implementations are input enabled. This is a usual condition
to ensure that implementations will accept any input provided by the tester. In

addition we also assume that all the processes considered in this paper, either
implementations or models, are not output-divergent.

It is normal to assume that it is possible for the tester to determine when
the SUT is quiescent and this is represented by δ. We can extend the transition
relation to include in quiescent states transitions labelled by δ.

Definition 2. Let (Q, I,O, T, qin) be an IOTS. We can extend T , the transition
relation, to Tδ by adding the transition (q, δ, q) for each quiescent state q. We
let Act denote the set of observable actions, that is, Act = I ∪ O ∪ {δ}. A
trace is an element of Act∗. Given a trace σ we let in(σ) denote the sequence
of inputs from σ. This can be recursively defined by the following in which ε is
the empty sequence: in(ε) = ε, if z ∈ I then in(zz̄) = zin(z̄) and if z �∈ I then
in(zz̄) = in(z̄).

Traces are often called suspension traces, since they can include quiescence,
but since these are the only types of traces we consider we simply call them
traces. Let us remark that traces are in Act∗ and so cannot contain τ . The
following is standard notation in the context of ioco (see, for example, [9]).

Definition 3. Let s = (Q, I,O, T, qin) be an IOTS. We use the following nota-
tion.

1. If (q, a, q′) ∈ Tδ, for a ∈ Act ∪ {τ}, then we write q a−−→ q′.
2. We write q

a
==⇒ q′, for a ∈ Act, if there exist q0, . . . , qm and k ≥ 0 such

that q = q0, q
′ = qm, q0

τ−−→ q1, . . . qk−1
τ−−→ qk, qk

a−−→ qk+1, qk+1
τ−−→

qk+2, . . . , qm−1
τ−−→ qm.

3. We write q
ε

==⇒ q′ if there exist q1, . . . , qk, for k ≥ 1, such that q = q1,
q′ = qk, q1

τ−−→ q2, . . . qk−1
τ−−→ qk.

4. We write q
σ

==⇒ q′ for σ = a1 . . . am ∈ Act∗ if there exist q0, . . . , qm, q = q0,

q′ = qm such that for all 1 ≤ i < m we have that qi
ai+1

===⇒ qi+1.
5. We write s

σ
==⇒ if there exists q′ such that qin

σ
==⇒ q′ and we say that σ is

a trace of s.

Let q ∈ Q and σ ∈ Act∗ be a trace. We consider

1. q after σ = {r ∈ Q|q σ
==⇒ r}

2. out(q) = {!O ∈ O|q !O
==⇒}

The last function can be extended to deal with sets in the expected way: Given
Q′ ⊆ Q we define out(Q′) = ∪q∈Q′out(q).

We say that s is deterministic if for every trace σ ∈ Act∗ we have that
out(qin after σ) contains at most one element.

Let us remark that for any state q we have q =⇒ q and that q a−−→ q′ implies
q

a
==⇒ q′. Let us also note that for all process s the empty sequence ε is a trace of

s. While we do not require the models or implementations to be deterministic it
is normal to use test cases that are deterministic. Next we present the standard
implementation relation for testing from an IOTS [9, 10].

Definition 4. Given processes i and s we have that i ioco s if for every trace σ
of s we have that out(i after σ) ⊆ out(s after σ).

2.2 Multi-port input output transition systems

There are two standard test architectures [1], shown in Figure 1. In the local
test architecture a global tester interacts with all of the ports of the SUT. In the
distributed test architecture there are ports through which a system interacts
with its environment. We focus on the case where there are two ports, tradi-
tionally called U and L for the ports connected to the upper and lower testers,
respectively. In this paper we usually use the term IOTS for the case where there
are multiple ports and when there is only one port we use the term single-port
IOTS.

SUT SUT

a) b)

Global
Tester

Upper Tester

Lower Tester

Fig. 1. The local and distributed test architectures

For an IOTS (Q, I,O, T, qin) with ports U and L we partition the set I into
sets IU and IL of inputs that can be received at U and L respectively and we
define a set OU of output that can be received at U and a set OL of output that
can be received at L. Each element of O is thus in (OU ∪ {−})× (OL ∪ {−}) in
which − denotes empty output and (−,−) is not an element of O. We assume
that the sets IU , IL, OU , OL are pairwise disjoint. Given y = (!OU , !OL) ∈ O we
let y|U denote !OU and y|L denote !OL. If an output tuple has output !Op at
one port p only then we often simply represent this as !Op.

In order to apply tests, if we have a global tester that observes all of the ports
then it observes a trace in Act∗, called a global trace. Given port p and a global
trace z̄ we let πp(z̄) denote the projection of z̄ onto p and this is called a local
trace. This is defined by the following rules in which q �= p:

1. πp(ε) = ε
2. if z ∈ (Ip ∪Op ∪ {δ}) then πp(zz̄) = zπp(z̄)
3. if z = (!OU , !OL), !Op �= −, then πp(zz̄) =!Opπp(z̄)
4. if z ∈ (Iq ∪Oq) or z = (!OU , !OL) for !Op = − then πp(zz̄) = πp(z̄).

Given traces σ and σ′ we write σ ∼ σ′ if σ and σ′ cannot be distinguished
when making local observations, that is, πU (σ) = πU (σ

′) and πL(σ) = πL(σ
′).

When testing in the distributed test architecture, each local tester observes a
sequence of actions at its port. We cannot distinguish between two traces if they
have the same projections at each port. That is why we cannot compare traces
by equality but by considering the permutations of traces defined by using ∼.

3 Test cases for the distributed test architecture

Before discussing implementation relations for the distributed test architecture
it is necessary to adapt the standard definition of a test case. In this paper a
test case t is an IOTS with the same input and output sets as s. We also have
that s and t synchronize on values and we say that such a test case is a global
test case. Thus, if s is in IOTS(I, O) then every global test case for s is in
IOTS(I, O∪{δ}). As usual, in each state a test case must be able to accept any
output from the SUT. Given I and O, the simplest test case is thus a process,
that will be called ⊥, which cannot send input to the SUT and thus whose traces
are all elements of (O∪{δ})∗. We let ⊥p denote the null process for port p, whose
set of traces is (Op ∪ {δ})∗.

As usual, a test case is an IOTS with a finite set of states. A test case t is
deterministic if for every sequence σ we have that t after σ contains at most
one process and t does not have a state where there is more than one input it
can send to the SUT. It is normal to require that test cases are deterministic.
In the distributed test architecture we place a local tester at each port and the
tester at port p only observes the behaviour at p. We therefore require that a
local test case contains a process for each port rather than a single process.

Definition 5. Let s ∈ IOTS(I, O) be an IOTS with ports U and L. A local
test case is a pair (tU , tL) of local testers in which:

1. tU is a deterministic test case with input set IU and output set OU ∪{δ} and

so is in IOTS(IU , OU ∪ {δ}). In addition, if tU
σ

==⇒ t′U for some σ then t′U
must be able to accept any value from OU ∪ {δ}.

2. tL is a deterministic test case with input set IL and output set OL ∪{δ} and

so is in IOTS(IL, OL ∪ {δ}). In addition, if tL
σ

==⇒ t′L for some σ then t′L
must be able to accept any value from OL ∪ {δ}.

Since observations are made locally at each port it is natural to give each of
the processes tU and tL a pass state and a fail state. However, this approach
leads to a loss of precision as we may observe traces at U and L that are indi-
vidually consistent with s but where, when the logs of these traces are brought
together, we know that there has been a failure. We know that there has been
a failure if no interleaving of the behaviours observed at the two ports is consis-
tent with the specification s. Let us consider, for example, a process s in which
input of ?iU at U is either followed by !OU at U and then output !OL at L or
by !O′

U at U and then output !O′
L at L. If we use a local test case that applies

?iU , the sequence ?iU !OU is observed at U and !O′
L is observed at L then each

local tester observes behaviour that is consistent with projections of traces of the
specification s and yet the pair of traces is not consistent with any conforming
implementation.

It might seem sensible to represent pass and fail in terms of states of the
pair of local testers and have unique pass and fail states of this. However, an
additional complication arises: Test effectiveness is not monotonic, that is, the

application of an input sequence can reveal a failure but we could extend this
input sequence in a manner so that we lose the ability to find a failure. To see
this, let us consider the following situation:

1. A specification s that has ?iU at U then it is possible to apply ?iU again and
this is followed by output !OL at L.

2. An implementation i that has ?iU at U , followed by !OL at L and then it is
possible to apply ?iU .

If the local tester at U applies ?iU and then observes output, and the local
tester at L just observes output then we observe a failure since i will produce !OL

at L when it should not have. However, if the local tester at U applies ?iU?iU
and then observes output, and the local tester at L just observes output then
we do not observe a failure since testing will observe ?iU?iU at U as expected
and !OL at L as expected. As a result, in order to define verdicts we will need to
define a mapping from states of a local test case to verdicts. In order to simplify
the exposition we avoid this complexity and use the specification s as an oracle,
as explained below in Definition 7.

It is important to consider what observations local test case (tU , tL) can
make. As usual, we assume that quiescence can be observed and so (tU , tL)
can observe the SUT being quiescent.3 A test run for (tU , tL) is a sequence
of observations that can occur in testing the SUT i with (tU , tL), that is, any
sequence of observations that can be made with tU ||i||tL. As usual, we require
that testing is guaranteed to terminate in finite time.

Before we formally define the concept of a test run, we introduce new notation
regarding how tU , i and tL can change through sending messages to one another.

Definition 6. Let i be a SUT and (tU , tL) be a test case. We define the transi-

tions a−−→t and
σ

==⇒t as follows:

1. For a ∈ Act, if i a−−→ i′ and tU
a−−→ t′U then tU ||i||tL a−−→t t

′
U ||i′||tL.

2. For a ∈ Act, if i a−−→ i′ and tL
a−−→ t′L then tU ||i||tL a−−→t tU ||i′||t′L.

3. For a = (!OU , !OL) ∈ OU × OL, if i
a−−→ i′, tU

!OU−−−−→ t′U , and tL
!OL−−−−→ t′L

then tU ||i||tL a−−→t t
′
U ||i′||t′L.

4. If i τ−−→ i′ then tU ||i||tL τ−−→t tU ||i′||tL.
5. If tU ||i||tL a−−→t t

′
U ||i′||t′L then we can write tU ||i||tL a−−→t .

6. If σ = a1 . . . ak ∈ (Act ∪ {τ})∗, t1U = tU , i
1 = i, t1L = tL, for 1 ≤ j ≤ k we

have tjU ||ij ||t
j
L

aj−−→t t
j+1
U ||ij+1||tj+1

L , tk+1
U = t′U , i

k+1 = i′, tk+1
L = t′L, then

tU ||i||tL σ−−→t t
′
U ||i′||t′L.

7. If tU ||i||tL σ−−→t t
′
U ||i′||t′L then we can write tU ||i||tL σ−−→t .

8. If σ = a1 . . . ak ∈ Act∗, σ1 ∈ τ∗a1τ∗ . . . τ∗akτ∗ and tU ||i||tL
σ1−−→t t

′
U ||i′||t′L

then we can write tU ||i||tL σ
==⇒t t

′
U ||i′||t′L.

3 While the observation of quiescence in the distributed test architecture is slightly
different, since it is possible to have inactivity at one port when there is activity at
another, in practice there are few differences since in testing we know the test case
being applied.

9. If tU ||i||tL σ
==⇒t t

′
U ||i′||t′L then we can write tU ||i||tL σ

==⇒t .

We are now in a position to define what it means for an implementation to
pass a test run with a local test case and thus to pass a local test case. We require
a test run to end with i being quiescent. In order to see why we require this
consider s1 and i1 shown in Figure 2. It is clear that i is a good implementation of
s when considering the distributed test architecture. Nevertheless, if we consider
the trace ?iU !OL of i1 we find that this is not a permutation of a trace of s.
However, testing cannot observe ?iU !OL. This differs from the case where we
observe global traces: if we can observe a global trace σ then we can construct
the prefixes of σ. However, in general this cannot be done when testing in the
distributed test architecture.

.

.

.

.

.

.

.

.

!OU

!OU

?iU?iU

!OL

!OL

?iU

?iU

?iU

Fig. 2. Processes s1 and i1

The following defines test runs with local test cases and what it means for
the SUT to pass a test run and to pass a local test case.

Definition 7. Let s be a specification, i be a SUT and (tU , tL) be a local test
case. We introduce the following notation.

1. A trace σ is a test run for i with local test case (tU , tL) if there exists t′U ,
t′L, and i′ such that tU ||i||tL σ

==⇒t t
′
U ||i′||t′L and t′U ||i′||t′L is quiescent.

2. Implementation i passes a test run σ with (tU , tL) for s if either of the
following two conditions hold.

(a) There does not exist a trace σ′ of s such that in(σ) ∼ in(σ′).
(b) there exists some σ′ ∼ σ that is a trace of s.

3. If i passes the test run σ, and s can be inferred from the context, we write
tU ||i||tL σ

==⇒ pass. Otherwise we say i fails the test run σ and we write

tU ||i||tL
σ

==⇒ fail.

4. Implementation i passes test case (tU , tL) for s if i passes every possible
test run of i with (tU , tL) for s and this is denoted PASSES(i, tU , tL, s).
Otherwise i fails (tU , tL) and this is denoted FAILS(i, tU , tL, s).

The first clause of the second item corresponds to σ not being in response
to an input sequence in(σ) such that the behaviour of s is defined for an input
sequence that is indistinguishable from in(σ) in the distributed test architecture.
Moreover, while the second clause of the same item does not say that s must be
quiescent after σ′ this is implicit when i passes a local test case (tU , tL) since if
i is quiescent after σ then i is quiescent after σδ and so this is also a possible
test run for i with (tU , tL).

Even if we bring together the logs from the testers at the end of a test run,
the use of the distributed test architecture can reduce the ability of testing to
distinguish between the specification s and the SUT i.

Proposition 1. It is possible for an implementation to fail a test case if global
traces are observed and yet pass the test case if only local traces are observed.

Proof. Consider the specification s1 and the implementation i1 illustrated in
Figure 2. Here the only sequence of actions in s1 is ?iU at U followed by !OU

at U , then !OL at L. The implementation i has ?iU at U followed by !OL at L,
then !OU at U . So, clearly i1 does not conform to s1 under the ioco relation and
will fail a global test case that applies ?iU . However, it is not possible for the
local testers to observe the difference if we apply ?iU since the tester at U will
see the expected sequence of actions ?iU !OU and the tester at L will observe the
expected sequence of actions !OL.

4 A new implementation relation

We have seen that an implementation may pass a test case when we only make
local observations and yet fail the test case if observations are made globally.
This suggest that the implementation relation required when making local ob-
servations will differ from the implementation relation ioco used when making
global observations. In this section we define a new implementation relation.

It might seem natural to define the new implementation relation so that the
behaviour of the implementation i at a port p must conform to the behaviour
of s at port p and this must hold for every port. However, we have already seen
that there could be a trace σ such that i

σ
==⇒ , the projections of σ at ports U

and L are individually consistent with traces of s and yet there is no σ′ ∼ σ that
is a trace of s. As a result, we require an implementation relation that compares
pairs of local traces with global traces of the specification.

We want the new implementation relation, that we call dioco, to correspond
to the ability of testing to determine when an implementation conforms to a given
specification when testing in the distributed test architecture. We can define this
implementation relation in terms of the traces in the implementation.

Definition 8. Given specification s and implementation i we have that i dioco s
if for every trace σ such that i

σ
==⇒ i′ for some i′ that is quiescent, if there is

a trace σ1 of s such that in(σ1) ∼ in(σ) then there exists a trace σ′ such that

s
σ′

==⇒ s′ and σ′ ∼ σ.

The implementation relation dioco captures our notion of test run and failing
a test run with a local test case.

Proposition 2. Given a specification s and an implementation i, i dioco s if
and only if for every local test case (tU , tL) we have that PASSES(i, tU , tL, s).

Proof. First let us assume that i dioco s and let (tU , tL) be a local test case.
We require to prove that i passes all possible test runs with (tU , tL) for s. Let σ
denote some trace that can be produced by a test run of i with (tU , tL). If there
does not exist a trace σ′ of s such that in(σ) ∼ in(σ′) then i passes this test
run by definition. We therefore assume that there is some such σ′. But, since
i dioco s we must have that there is a trace σ′ of s such that σ′ ∼ σ and so i
passes this test run with (tU , tL). It thus follows that i passes all possible test
runs with (tU , tL) for s, as required.

Now let us assume that i passes all possible test runs and let σ be a trace
such that i

σ
==⇒ i′ for some i′ that is quiescent. Thus, we consider the situation

in which there exists a trace σ1 of s such that in(σ1) ∼ in(σ) and we are required

to prove that there exists some σ′ such that s
σ′

==⇒ and σ′ ∼ σ. Let tp = πp(σ)
for p ∈ {U,L}. Then clearly σ is a possible test run of i with local test case
(tU , tL) and so the result follows from the fact that i must pass all possible test
runs with (tU , tL).

The next result shows that the implementation relations dioco and ioco are
incomparable.

Proposition 3. There exist processes s and i such that i dioco s but not
i ioco s. There also exist processes s and i such that i ioco s but not i dioco s.

Proof. Consider the processes s1 and i1 given in Figure 2. It is clear that
i1 dioco s1 since the local testers cannot distinguish between the traces ?iU !OU !OL

and ?iU !OL!OU . However, it is also clear that out(i1 after ?iU) �⊆ out(s1 after ?iU)
and so we do not have that i1 ioco s1.

Now consider processes s2 and i2 given in Figure 3. The only traces that
i2 and s2 have in common are those in the sets δ∗, δ∗?iLδ∗, and δ∗?iLδ∗?iU
δ∗ and for each of these i2 and s2 have the same set of possible outputs, δ∗.
Thus, i2 ioco s2. However, local testers cannot distinguish between ?iL?iU and
?iU?iL. We have that the second of these sequences leads to an output of !OU

in i2 and this is not allowed after ?iL?iU in s2. As a result we do not have that
i2 dioco s2, as required.

The use of the distributed test architecture reduces the ability of testing to
observe behaviours of the SUT and thus it is natural to expect that there are
cases where the resultant implementation relation allows an implementation i
to conform to s even though we do not have that i ioco s. However, one would
expect dioco to be strictly weaker than ioco since all observations that can be
made locally can also be made globally. The example presented in Figure 3, and
used in Proposition 3, shows that this is not the case. This example relies on s

.

.

.

.

.

.

.
!OU

?iU

?iU ?iL

?iL

?iL

?iL

?iL

?iU

?iU

?iU

Fig. 3. Processes s2 and i2

not being input enabled: We do not have i dioco s because the ‘problematic’
behaviour in i2 occurs after a trace σ that is not in s2 but such that there
is a permutation σ′ ∼ σ that is in s2. The following results show that if the
specification and implementation are input enabled then we obtain the expected
result: dioco is strictly weaker than ioco.

Proposition 4. If s and i are input enabled and i ioco s then every trace of i
is also a trace of s.

Proposition 5. If s and i are input enabled then whenever we have that i ioco s
it must be the case that i dioco s.

Proof. Assume that i ioco s, i
σ

==⇒ i′ for some i′ that is quiescent, and there is
a trace σ1 of s such that in(σ1) ∼ in(σ). It is sufficient to prove that there is a
trace σ′ of s such that σ′ ∼ σ. This follows immediately from the fact that, by
Proposition 4, σ is a trace of s.

While for input enabled specification s and implementation i we have that
i ioco s implies i dioco s, the converse does not hold. In order to see this,
consider the processes in Figure 4. It is clear that these are incomparable under
ioco since if an output is produced then the value of this is determined by
the initial input and the mapping from initial input to output is different in
the two cases. However, in each case the two paths to the states from which
there can be output simply require that there is at least one use of ?iU and at
least one use of ?iL. As a result, the sets of paths to the two states from which
output can be produced are indistinguishable when observing events locally and
so the two processes cannot be distinguished when testing in the distributed test
architecture.

It is usual to insist that there is no ‘unnecessary nondeterminism’ and thus
the tester cannot reach a state in which it could provide alternative inputs to
the implementation (see, for example, [9]). This ensures that the test is control-
lable. In the next section we interpret this in the context of the distributed test
architecture.

.
.

.

.
?iU

.

..

?iU

?iL

?iL

!OU !OL

?iU

?iU ?iU

?iL

?iL ?iL

?iL?iL

?iU?iU

.
.

.

.
?iU

.

..

?iU

?iL

?iL

!OU
!OL

?iU

?iU ?iU

?iL

?iL ?iL

?iL?iL

?iU?iU

Fig. 4. Processes that are not related under ioco

5 Deterministic test cases

Since test objectives are usually stated at the specification level it is natural to
initially generate a global test case that achieves a given test objective. However,
there is then the challenge of producing local testers that implement such a global
test case. In this section we assume that a deterministic global test case t has
been produced for testing an implementation i against specification s.

It is normal to use deterministic test cases and so for (tU , tL) we already
assumed in Definition 5 that tU and tL are deterministic. However, it is possible
that (tU , tL) is nondeterministic despite tU and tL being deterministic. A simple
example of this is any pair (tU , tL) in which tU and tL both start by sending an
input to the implementation: Even if tU and tL are deterministic, the order in
which the implementation receives these inputs from tU and tL is not predictable.
Nondeterminism occurs in (tU , tL) if both tU and tL can provide an input to the
implementation at some point in a test run. In this section we define what it
means for local test case (tU , tL) to be deterministic for a given specification s
and show how we can map a global test case to a local test case.

It might seem desirable that a local test case is deterministic for any possi-
ble implementation. However, in Proposition 6 we will prove that for an input
enabled specification if the interaction of a deterministic local test case (tU , tL)
with an implementation i can lead to nondeterminism then there is a local test
case (t′U , t

′
L) that i fails and shows how (t′U , t

′
L) can be constructed from (tU , tL).

Thus, it is only necessary to consider traces that can be produced by the specifi-
cation and test case interacting. Let us note that since the testers are local, this
is equivalent to considering all traces that can be produced by the local test case
combined with the specification and all permutations that preserve the traces at
each port.

It is interesting to note that for any local test case (tU , tL) such that tU and
tL both have the potential to send input to the SUT, there is some behaviour
of a possible implementation that will lead to nondeterminism. This is the case
since there must exist a possible trace σU at U after which tU will send input
to the SUT and a possible trace σL at L after which tL will send input to the

SUT and so there is nondeterminism if the SUT produces any trace σ′ ∼ σUσL

in testing. As a result, it is unreasonable to require more than for the local test
case to be deterministic for all possible behaviours of the specification.

Definition 9. Given a specification s we say that the local test case (tU , tL) is
deterministic for s if there do not exist traces σ1 and σ2, with σ2 ∼ σ1, and

a1, a2 ∈ I, with a1 �= a2, such that tU ||s||tL
σ1a1
===⇒ t and tU ||s||tL

σ2a2
===⇒ t .

Given a specification s, we let TD(s) denote the set of local test cases that are
deterministic for s.

Interestingly, this is similar to the notion of local choice defined in the con-
text of MSCs [19]. We can now prove that given local test case (tU , tL) that is
deterministic for specification s, the application of (tU , tL) to an implementation
i can only be nondeterministic through an erroneous behaviour of i and there is
a prefix of (tU , tL) that is capable of detecting this erroneous behaviour through
local observations. The proof will use the notion of a prefix of a local test case
(tU , tL), which is a local test case that can be generated from (tU , tL) by replac-
ing one or more of the input states4 of tU and tL by processes that can only
receive output.

Proposition 6. Let us suppose that s is an input enabled specification, i is
an implementation, and (tU , tL) ∈ TD(s) is a deterministic test case for s. If
there exists σ1 and σ2, with σ2 ∼ σ1, and a1, a2 ∈ I, with a1 �= a2, such

that tU ||i||tL
σ1

==⇒ t t′U ||i′||t′L, tU ||i||tL
σ2

==⇒ t t′′U ||i′′||t′′L, t′U ||i′||t′L
a1

==⇒ , and

t′′U ||i′′||t′′L
a2

==⇒ then there exists a prefix (t1U , t
1
L) of (tU , tL) such that i fails

(t1U , t
1
L).

Proof. By definition, since (tU , tL) is deterministic for s, σ1 ∼ σ2 can be followed

by different inputs when applying (tU , tL), we must have that ¬(s σ′
==⇒) for all

σ′ ∼ σ1. Let σ be the shortest prefix of σ1 such that tU ||i||tL σ
==⇒t t

1
U ||i1||t1L

for some i1 that is quiescent after σ and no σ′
1 ∼ σ is a trace of s. If t1U ||i1||t1L

cannot perform any actions then σ is a trace that can be produced by a test run
of i with (tU , tL) and so the result follows from the fact that s is input enabled.
Otherwise we have that (t1U , t

1
L) is in an input state and so we can define a prefix

(t′′U , t
′′
L) of (tU , tL) by replacing the processes t1U and t1L, of tU and tL, by the

processes ⊥U and ⊥L, respectively, that cannot send input to the SUT. Then
the interaction of i with (t′′U , t

′′
L) can lead to testing terminating with the trace

σ and thus at least one tester observing a failure.

Given local test case (tU , tL), it is possible to produce the set of prefixes
of (tU , tL) and use these in testing. If we do this then an implementation that
passes all of these local test cases does not lead to nondeterminism when tested
with (tU , tL). If we have a deterministic global test case t, we want to devise
local testers tU and tL that implement t.

4 An input state of process s is a reachable state r that can perform an input, that is,

there exists σ such that s
σ

==⇒ r and an input ?i such that r ?i−−→ .

Definition 10. A local test case (tU , tL) implements the global test case t for
specification s if we have that the interaction between (tU , tL) and s can lead to
trace σ if and only if the interaction between t and s can produce trace σ. More
formally, for every trace σ we have that tU ||s||tL σ

==⇒ if and only if t||s σ
==⇒ .

We can produce local testers by taking projections of a global test case t. In
taking the projection of t at p, we will eliminate actions at port q �= p.

Definition 11. Given global test case t and port p, we let localp(t) denote the
local tester at p defined by the following rules.

1. If t is the null process ⊥, that cannot send an input, then localp(t) is ⊥p.
2. If a ∈ Ip ∪Op ∪ {δ} then localp(a.s) = a.localp(s)
3. If a ∈ Iq ∪Oq, q �= p, then localp(a.s) = localp(s)
4. If a = (!OU , !OL), !Op �= −, then localp(a.s) =!Op.localp(s)
5. If a = (!OU , !OL), !Op = −, then localp(a.s) = localp(s)
6. localp(t1 + . . .+ tk) = localp(t1) + . . .+ localp(tk).

If we give the function localp a deterministic global test case then it returns
the local testers we require.

Proposition 7. Given deterministic global test case t and tp = localp(t) for
p ∈ {U,L} we have that if the local test case (tU , tL) is deterministic then (tU , tL)
implements t.

Proof. We prove the result by induction on the size of t, which is the number
of nodes of the tree formed from t. Clearly the result holds for the base case
where t has only one node and so is the null test case ⊥. Inductive hypothesis:
We assume that the result holds for every global test case of size less than k, for
k > 1, and t has size k. There are three cases to consider.

Case 1: t starts by sending input ?i to the SUT, that is, t ?i−−→ t′ for some t′.
Since t is deterministic, t′ is uniquely defined. Without loss of generality, ?i is at

port U and tU
?i−−→ t′U (the proof for i? being at port L is similar). Let S be the

set of processes that s can become after ?i, that is, S = {s1|s ?i−−→ s1}, and let
us consider s′ =

∑
S. Clearly, t′ and (t′U , tL) are deterministic for s′ and the size

of t′ is less than k. Further, tL = localL(t
′) and t′U = localU (t

′) and so, by the
inductive hypothesis, we have that a trace σ′ can be produced by the interaction
between t′ and s′ if and only if it can be produced by the interaction between
(t′U , tL) and s′. A trace σ can be produced by the interaction between t and s if
and only if σ is ?iσ′ for some trace σ′ that can be produced by an interaction
between s′ and t′. Since (tU , tL) is deterministic for s we also have that a trace
σ can be produced by the interaction between (tU , tL) and s if and only if σ is
?iσ′ for some trace σ′ that can be produced by an interaction between s′ and
(t′U , tL). The result thus follows.

Case 2: t starts with an output from the SUT, possibly branching on different
outputs. For each output y that s can produce from its initial state we let ty, tyU ,

tyL, and sy be defined by t
y−−→ ty and tU ||s||tL

y−−→t t
y
U ||sy||t

y
L. Thus, s

y =
∑

S,

being S the set of processes that s can become after y. Let yp = y|p for p ∈ {U,L}
and so tp

yp−−→ typ. Clearly ty and (tyU , t
y
L) are deterministic for sy. We can now

apply the inductive hypothesis to ty, (tyU , t
y
L), and sy and the result follows.

Case 3: t starts with δ and so tU and tL both start with δ. Then s
δ

==⇒ s
and so the result follows from the inductive hypothesis.

6 Conclusions

This paper has investigated testing from an input output transition system in the
distributed test architecture. The problem of testing from a deterministic finite
state machine in this architecture has received much attention but, while deter-
ministic finite state machines are appropriate for modelling several important
classes of system, input output transition systems are more general.

When testing in the distributed test architecture each tester only observes
the actions at its port. As a result, it is not possible to reconstruct the global
trace after testing and this has an effect on the ability of testing to distinguish
between two processes. We introduced a new implementation relation dioco that
captures the ability of testing to compare an implementation and a specification:
i dioco s if and only if it is possible for testing to show that i does not correctly
implement s when testing in the distributed test architecture.

It is normal to require a test case to be deterministic. However, there are test
cases that are deterministic if there is a single global tester that interacts with
the SUT at all its ports but that cannot be implemented as a deterministic local
test case when testing in the distributed test architecture. We have defined a
function that takes a global test case and returns a local test case that consists
of a tester for each port. We have proved that this function returns a local
test case if and only if it is possible to implement the global test case using a
deterministic local test case.

There are several avenues of future work. First, we could parameterize the
implementation relation with a set of input sequences or traces. In addition, there
is the problem of automatically generating test cases that can be implemented as
deterministic local test cases. It has been shown that controllability and observ-
ability problems, when testing from a deterministic finite state machine, can be
overcome if the testers can exchange coordination messages through an external
network and there should be scope for using coordination messages when test-
ing from an input output transition system. Finally, recent work has described
systems in which an operation is triggered by receiving input at more than one
port [20] and it would be interesting to extend the work to such systems.

References

1. ISO/IEC JTC 1, J.T.C.: International Standard ISO/IEC 9646-1. Information
Technology - Open Systems Interconnection - Conformance testing methodology
and framework - Part 1: General concepts. ISO/IEC (1994)

2. Sarikaya, B., Bochmann, G.v.: Synchronization and specification issues in protocol
testing. IEEE Transactions on Communications 32 (1984) 389–395

3. Luo, G., Dssouli, R., Bochmann, G.v.: Generating synchronizable test sequences
based on finite state machine with distributed ports. In: 6th IFIP Workshop on
Protocol Test Systems, IWPTS’93, North-Holland (1993) 139–153

4. Tai, K.C., Young, Y.C.: Synchronizable test sequences of finite state machines.
Computer Networks and ISDN Systems 30(12) (1998) 1111–1134

5. Rafiq, O., Cacciari, L.: Coordination algorithm for distributed testing. The Journal
of Supercomputing 24(2) (2003) 203–211

6. Ural, H., Williams, C.: Constructing checking sequences for distributed testing.
Formal Aspects of Computing 18(1) (2006) 84–101

7. Khoumsi, A.: A temporal approach for testing distributed systems. IEEE Trans-
actions on Software Engineering 28(11) (2002) 1085–1103

8. Hierons, R.M., Ural, H.: The effect of the distributed test architecture on the
power of testing. The Computer Journal 51(4) (2008) 497–510

9. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Software – Concepts and Tools 17(3) (1996) 103–120

10. Tretmans, J.: Testing concurrent systems: A formal approach. In: 10th Int. Conf.
on Concurrency Theory, CONCUR’99, LNCS 1664, Springer (1999) 46–65

11. Núñez, M., Rodŕıguez, I.: Towards testing stochastic timed systems. In: 23rd IFIP
WG 6.1 Int. Conf. on Formal Techniques for Networked and Distributed Systems,
FORTE’03, LNCS 2767, Springer (2003) 335–350

12. Brandán Briones, L., Brinksma, E.: A test generation framework for quiescent real-
time systems. In: 4th Int. Workshop on Formal Approaches to Testing of Software,
FATES’04, LNCS 3395, Springer (2004) 64–78

13. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In:
11th Int. SPIN Workshop on Model Checking of Software, SPIN’04, LNCS 2989,
Springer (2004) 109–126

14. Bijl, M.v., Rensink, A., Tretmans, J.: Action refinement in conformance testing. In:
17th Int. Conf. on Testing of Communicating Systems, TestCom’05, LNCS 3502,
Springer (2005) 81–96

15. López, N., Núñez, M., Rodŕıguez, I.: Specification, testing and implementation
relations for symbolic-probabilistic systems. Theoretical Computer Science 353(1–
3) (2006) 228–248

16. Frantzen, L., Tretmans, J., Willemse, T.: A symbolic framework for model-based
testing. In: 1st Combined Int. Workshops on Formal Approaches to Software
Testing and Runtime Verification, FATES 2006 and RV 2006, LNCS 4262, Springer
(2006) 40–54

17. Merayo, M.G., Núñez, M., Rodŕıguez, I.: Formal testing from timed finite state
machines. Computer Networks 52(2) (2008) 432–460

18. Brinksma, E., Heerink, L., Tretmans, J.: Factorized test generation for multi-
input/output transition systems. In: 11th IFIP Workshop on Testing of Commu-
nicating Systems, IWTCS’98, Kluwer Academic Publishers (1998) 67–82

19. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts.
IEEE Transactions on Software Engineering 29(7) (2003) 623–633

20. Haar, S., Jard, C., Jourdan, G.V.: Testing input/output partial order automata. In:
Joint 19th IFIP TC6/WG6.1 Int. Conf. on Testing of Software and Communicating
Systems, TestCom’07, and 7th Int. Workshop on Formal Approaches to Software
Testing, FATES’07, LNCS 4581, Springer (2007) 171–185

