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In this paper we present a formal methodology to test both the functional and temporal behaviors in systems where

temporal aspects are critical. We extend the classical finite state machines model with features to represent timed

systems. Our formalism allows three different ways to express the timing requirements of systems. Specifically, we

consider that time requirements can be expressed either by means of fix time values, by using random variables,

or by considering time intervals. Different implementation relations, depending on both the interpretation of time

and on the non-determinism appearing in systems, are presented and related. We also study how test cases are

defined and applied to implementations. Test derivation algorithms, producing sound and complete test suites,

are also presented. That is, by deriving these test suites we relate the different notions of passing tests and

the different implementation relations. In other words, for a given correctness criterion, a system represents an

appropriate implementation of a given model if and only if the system successfully passes all the test belonging

to the derived test suite.
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1. Introduction

The scale and heterogeneity of current systems
make impossible for developers to have an over-
all view of them. Thus, it is difficult to foresee
those errors that are either critical or more proba-
ble. In this context, formal testing techniques pro-
vide systematic procedures to check implementa-
tions in such a way that the coverage of critical
parts/aspects of the system under test depends
less on the intuition of the tester. In this line, they
allow to test the correctness of a system with re-
spect to a specification. Formal testing originally
targeted the functional behavior of systems, such
as determining whether the tested system can, on
the one hand, perform certain actions and, on the
other hand, does not perform some unexpected
ones. While the relevant aspects of some systems
only concern what they do, in some other systems
it is equally relevant how they do what they do.
Thus, after the initial consolidation stage, formal
testing techniques started also to deal with non-
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functional properties such as the probability of
an event to happen, the time that it takes to per-
form a certain action, or the time when a cer-
tain action happens. The work on formal testing
applied to timed systems has attracted a lot of
attention during the last years. In fact, there
are already several proposals for timed testing
(e.g. [22,7,17,31,28,10,24,12,9,20,19,3]). In these
papers, time is considered to be deterministic,
that is, time requirements follow the form “af-
ter/before t time units...” In fact, in most of the
cases time is introduced by means of clocks follow-
ing [1]. Even though the inclusion of time allows
to give a more precise description of the system
to be implemented, there are frequent situations
that cannot be accurately described by using this
notion of deterministic time. For example, in or-
der to express that a message will arrive at any
point of time belonging to the interval [0, 1] we
will need, in general, infinite transitions, one for
each possible value belonging to the interval. In
this case, it would be more appropriate to use
time intervals to describe the system. Let us con-
sider now that we have to simulate the perfor-
mance of a petrol station. Since cars arrive in
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such stations by following a Poisson distribution,
we would need again to use an infinite number of
transitions. Moreover, if we have to use a time
interval we would be very imprecise since all that
we could say is that the next car will arrive in
the interval [0,∞). Thus, it would be very useful
to have a mechanism allowing to express that a
time constraint is given by using a random vari-
able that follows a precise probability distribution
function.

In this paper we study formal testing method-
ologies where the temporal behavior of systems is
taken into account. In order to present our con-
tribution, we will use a simple extension of the
classical concept of Finite State Machine. Intu-
itively, transitions in finite state machines indi-
cate that if the machine is in a state s and re-
ceives an input i then it will produce an output o
and it will change its state to s′. An appropriate

notation for such a transition could be s
i/o
−→ s′.

If we consider a timed extension of finite state
machines, transitions as s

i/o
−−−−→d s

′ indicate that
the time between receiving the input i and re-
turning the output o is given by d, where d be-
longs to a certain time domain. Even though we
have chosen finite state machines, because they
are widely used in the formal testing community,
our results can be straightforwardly adapted to
deal with (input-output) labelled transition sys-
tems; the extension of our results to deal with
(timed) automata is more cumbersome, but not
difficult taking as basis [28].

We consider three different domains to express
temporal requirements: Time given by fix values,
by random variables, and by time intervals. A

transition such as s
i/o

−−−−→ t s
′ indicates that if

the machine is in state s and receives the input i,
it will perform the output o and reach the state

s′ after t time units. A transition as s
i/o

−−−−→ ξ s
′

indicates that if the machine is in state s and
receives the input i, it will perform the output
o and reach the state s′ after a certain time t
with probability Fξ(t), where Fξ is the probabil-
ity distribution function associated with ξ. Fi-

nally, s
i/o

−−−−→ [t1,t2] s
′ means that if the machine

is in state s and receives the input i, it will per-

form the output o and reach the state s′, and
it will take a time greater than or equal to t1
but smaller than or equal to t2. Even though
our methodology allows three very different ways
for representing time requirements, random vari-
ables and time intervals present a more complex
situation than fix time values. Thus, we need to
treat them separately, although following a com-
mon line. Specifically, due to the fact that we
work under the assumption of a black-box test-
ing framework, testers cannot compare in a direct
way timed requirements of the real implementa-
tion with those established in the model (either
random variables or time intervals). The idea is
that we can see the random variable (or the time
interval) defining a given transition in the model,
but we cannot do the same with the correspond-
ing transition of the implementation, since we do
not have access to it. Thus, in contrast with ap-
proaches considering fix time values, to perform
a transition of the implementation once does not
allow us to obtain all the information about its
temporal behavior. In order to overcome this
problem, we have to perform the same transition
to collect different time values. So, we consider
a set of observations collected by means of the
interaction with the implementation and estab-
lish different levels of temporal agreement with
respect to the (accessible) values appearing in the
formal model. We think that this additional com-
plication is the main reason why there is almost
no work on testing timed systems where time is
not given by means of fix time values. In fact,
as far as we know, [25] represents the only pro-
posal presenting a formal testing methodology to
test stochastic time systems that can be described
by means of finite state machines. Also, [2,21]
present testing frameworks for stochastic systems
but their approaches are not related to ours since
they take as starting point the classical de Nicola
& Hennessy [8,15] methodology. Let us note that
this additional machinery is not necessary in the
case of fix time values. This is so because if we
observe that the performance of a transition in
the implementation takes t time units, we know
that any further performances will always take
the same time t, while this is not the case if the
time requirement is described either by using a



Formal Testing from Timed Finite State Machines 3

random variable or a time interval.
We study conformance testing relations to re-

late implementations with formal models. First,
we will introduce an implementation relation
where time is not considered. The idea is that the
implementation I does not invent anything for
those inputs that are specified in the model. In or-
der to cope with time, we do not take into account
only that a system may perform a given action
but we also record the amount of time that the
system needs to do so. We propose several timed
conformance relations according to the interpre-
tation of good implementation and the different
time domains we consider. Time aspects add ex-
tra complexity to the task of defining these rela-
tions. For example, even though an implemen-
tation I had the same traces as a formal model
S, we should not consider that I conforms to S
if I is always slower than S. Moreover, it can
be the case that a system performs the same se-
quence of actions for different times. These facts
motivate the definition of several conformance re-
lations. For example, it can be said that an im-
plementation conforms to a formal model if the
implementation is always faster, or if the imple-
mentation is at least as fast as the worst case of
the model. In a first approach, and in order to im-
prove readability, we will restrict ourselves to ob-
servable non-deterministic systems. We say that
a machine is observable non-deterministic, or sim-
ply observable, if it does not have two transitions

such as s
i/o

−−−−→d1 s1 and s
i/o

−−−−→d2 s2. However,

we allow transitions such as s
i/o1

−−−−→ d1 s1 and

s
i/o2

−−−−→d1 s2, as far as o1 6= o2. Thus, we can still
specify partially non-deterministic behaviors. In
the last part of the paper we suppress this con-
dition and extend our work for dealing with fully
non-deterministic systems.

With respect to the application of tests to
implementations, the above mentioned non-
deterministic temporal behavior requires that
tests work in a specific manner. For example,
if we apply a test and we observe that the imple-
mentation takes less time than the one required
by the formal model, then this single application
of the test allows us to know that the implemen-
tation may be faster than the model, but not that

it must be so.
We would like to conclude this introduction by

pointing out one of the limitations of black box
testing. Essentially, if the tester does not make
any assumption on the system under test, then
the verdict of the testing process will be, most
of the times, inconclusive. In other words, the
tester will not be able to ensure that the system
does not present an error. Let us consider the
following specification:

x in {0,1}

while true do begin

read(x); write(x)

end

Let us suppose that we have to test whether a
given program conforms to this specification and
we do not have access to the code of the program.
In order to test the program, we have to pro-
vide values, check the screen, and if they coincide
then the implementation is correct. However, if
we have no information about the internal struc-
ture of the program, how many times do we give
values? Three times is enough? 100? In fact, we
can have the following implementation:

Program simple;

begin

read(x); write(x);

read(x); write(x);

read(x); write(x);

read(x); write(2)

end.

In order to overcome this problem, some formal
testing approaches assume that some information
about the system under test is available. For ex-
ample, it is very common to consider that the im-
plementation has a known number of states and
that it is somehow deterministic. In our example,
if we assume that our black-box implementation
has, for instance, one state (let us note that our
program simple has more than one state) and
that it is deterministic then there exist testing
methods to ensure that the implementation is in-
deed either correct or faulty. In this paper we do
not assume this additional information. Thus, in
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general, we will not be able to provide a conclu-
sive verdict. However, our methodology allows
to ensure correctness in the limit of any imple-
mentation under test (that is, without assuming
additional hypothesis). In this running example,
we would be able to provide verdicts such as “the
program works as expected if we provide n values
or less.” If n tends to infinite then, in the limit,
we can prove the correctness of the black-box.

Some of the results appearing in this paper
have appeared in [25,26]. The main contribution
of this paper with respect to this previous work
is to present a unified framework containing the
formalisms and results appearing in these papers.
In addition, this paper includes the work on time
intervals (this was not treated in previous papers)
and contains proofs of the main results as well as
additional explanations and examples.

The rest of the paper is organized as follows. In
Section 2 we introduce additional notation used
along the paper. In Section 3 we present our
timed formalism. In Section 4, our timed con-
formance relations for each of the time domains
are considered. In Section 5 we show how tests
are defined and describe how to apply them to
implementations. In Section 6 we present an al-
gorithm to derive sound and complete test suites
with respect to the implementation relations pre-
sented in Section 4. In Section 7 we present an ex-
tension of our work considering non-deterministic
behaviors of systems. We devote Section 8 to re-
lated work. In Section 9 we give some concluding
remarks. Finally, in Section 10 we present an ap-
pendix where Pearson’s χ2 hypothesis contrast is
described.

2. Preliminaries

Along this paper, we consider that time val-
ues belong to a generic domain Time. Most con-
cepts will be parameterized with respect to this
domain. However, some of the notions and def-
initions will depend on the concrete instance of
the generic time domain. Specifically, we will
consider three different possibilities to represent
time: Time values, stochastic time, and time in-
tervals. Regarding time values, we will use IR+

as time domain. We need to introduce notation,

related to stochastic time and time intervals, that
we will use during the rest of the paper.

Definition 1 We say that â = [a1, a2] is a time
interval if a1 ∈ IR+, a2 ∈ IR+∪{∞}, and a1 ≤ a2.
We assume that for all r ∈ IR+ we have r < ∞
and r + ∞ = ∞. We consider that IIR+ denotes
the set of time intervals. Let â = [a1, a2] and
b̂ = [b1, b2] be time intervals. We write

• â ⊆ b̂ if we have both b1 ≤ a1 and a2 ≤ b2;

• â � b̂ if we have both a1 ≤ b1 and a2 ≤ b2;

• â≪ b̂ if we have a2 ≤ b1.

In addition, we introduce the following notation

• â+ b̂ denotes the interval [a1 + b1, a2 + b2];

• πi(â), for i ∈ {1, 2}, denotes the value ai.
⊓⊔

Time intervals will be used to express time con-
straints associated with the performance of ac-
tions. The idea is that if we associate a time
interval [t1, t2] ∈ IIR+ with a task we want to
indicate that the associated task should take at
least t1 time units and at most t2 time units to
be performed. Let us note that in the case of
[t1,∞] and [0,∞] we are abusing the notation
since these intervals are half-closed intervals, that
is, they represent the intervals [t1,∞) and [0,∞),
respectively.

We use random variables to model stochastic
time. Thus, we need to introduce some basic con-
cepts on random variables.

Definition 2 We denote the set of random vari-
ables by V (ξ, ψ, . . . to range over V). We will
consider that the sample space (that is, the do-
main of random variables) is IR+. The reason
for this restriction is that random variables will
always be associated with time distributions, so
they cannot take a negative value.

Let ξ ∈ V be a random variable. We define the
probability distribution function associated to ξ as
the function Fξ : IR+ −→ [0, 1] such that Fξ(x) =
P (ξ ≤ x), where P (ξ ≤ x) is the probability that
ξ assumes values less than or equal to x.
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Given two random variables ξ, ξ′ ∈ V we con-
sider that ξ + ξ′ denotes a random variable dis-
tributed as the addition of the two random vari-
ables ξ and ξ′. Let Fξ and Fξ′ be the proba-
bility distribution functions of ξ and ξ′, respec-
tively. We write ξ = ξ′ if for all x ∈ IR we have
Fξ(x) = Fξ′(x).

We will call sample to any multiset of positive
real numbers. We denote the set of multisets in
IR+ by ℘(IR+). Let ξ be a random variable and
J be a sample. We denote the confidence of ξ on
J by γ(ξ, J). ⊓⊔

In the previous definition, a sample simply de-
notes a multiset of observed values. For example,
let us toss a coin one hundred times. A sample
consists of the different values that we observe,
that is, n heads and 100− n tails. In our setting,
samples will be associated with time values that
implementations need to perform sequences of ac-
tions. We have that γ(ξ, J) takes values in the
interval [0, 1]. Intuitively, bigger values of γ(ξ, J)
indicate that the observed sample J is more likely
to be produced by the random variable ξ. That
is, this function decides how similar the probabil-
ity distribution function generated by J and the
one corresponding to the random variable ξ are.
Intuitively, if we are testing whether a coin is fair,
we toss it one hundred times, and we observe 89
heads and 11 tails, we will conclude that, with a
high probability, the coin is not fair. In the ap-
pendix of this paper we show how confidence is
formally defined.

In order to avoid side-effects, we will always
assume that all the random variables appearing
in the definition of a TFSM are independent. Let
us note that this condition does not restrict the
distributions to be used. In particular, there can
be random variables identically distributed even
though they are independent.

3. A timed extension of the FSM model

In this section we introduce our timed exten-
sions of the classical finite state machine model.
The main difference with respect to usual FSMs
consists in the addition of time to indicate the
lapse between offering an input and receiving an
output.

1

2 3

a1/b1 a2/b2

a3/b3

a4/b4

a1/b1

M1
I = {a1, a2, a3, a4}
O = {b1, b2, b3, b4}
t12 = (s1, s2, a1, b1, 1)
t13 = (s1, s3, a2, b2, 2)
t32 = (s3, s2, a3, b3, 1)
t21 = (s2, s1, a4, b4, 3)
t22 = (s2, s2, a1, b1, 4)

Figure 1. Example of TFSM: Fix time values.

3.1. Basic concepts on TFSMs
Definition 3 Let Time be the time domain. A
Timed Finite State Machine, in the following
TFSM, is a tuple M = (S, I,O, T r, sin) where S
is a finite set of states, I is the set of input ac-
tions, O is the set of output actions, Tr is the set
of transitions, and sin is the initial state.

A transition belonging to Tr is a tuple
(s, s′, i, o, d) where s, s′ ∈ S are the initial and
final states of the transition, i ∈ I and o ∈ O are
the input and output actions, respectively, and
d ∈ Time denotes the time that the transition
needs to be completed.

We say that M is input-enabled if for all state
s ∈ S and input i ∈ I, there exist s′ ∈ S, o ∈ O,
and d ∈ Time such that (s, s′, i, o, d) ∈ Tr. We
say that M is observable non-deterministic, or
simply observable, if there do not exist two dif-
ferent transitions (s, s1, i, o, d1) and (s, s2, i, o, d2)
belonging to Tr. ⊓⊔

Intuitively, a transition (s, s′, i, o, d) indicates
that if the machine is in state s and receives the
input i then, after the time defined by d, the ma-
chine emits the output o and moves to s′. De-
pending on the notion of time that we are using,
d may be a time value, a random variable, or a
time interval. Specifically, if we are considering
fix time values then d ∈ IR+ is a non-negative
real number, if we are considering stochastic time
then d ∈ V is a random variable, and if we are
considering time intervals then d ∈ IIR+ .

Example 1 In Figure 1 we present a TFSM. In
this case, the time associated with each action is
a non-negative real value. Let us suppose that
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1

2 3

a2/b1 a2/b1

a2/b2

a1/b1a1/b2

a1/b1

a1/b2 a1/b1

a1/b2

M
s
1

a2/b2

F1(x) =





0 if x ≤ 0
x
3

if 0 < x < 3

1 if x ≥ 3

F2(x) =

{
0 if x < 4
1 if x ≥ 4

F3(x) =

{
1 − e−3·x if x ≥ 0

0 if x < 0

I = {a1, a2}, O = {b1, b2}
t111 = (s1, s1, a1, b1, ξ11)
t112 = (s1, s1, a1, b2, ξ12)
t12 = (s1, s2, a2, b1, ξ13)
t13 = (s1, s3, a2, b1, ξ14)
t21 = (s2, s1, a2, b2, ξ15)
t221 = (s2, s2, a1, b1, ξ21)
t222 = (s2, s2, a1, b2, ξ22)
t32 = (s3, s2, a2, b2, ξ23)
t331 = (s3, s3, a1, b1, ξ31)
t332 = (s3, s3, a1, b2, ξ32)

where ξij are independent random variables dis-

tributed by following Fi

Figure 2. Example of TFSM: Stochastic time.

the initial state of M1 is the state labelled by 1.
Then, the transition t12 can be performed and it
will take time 1.

Let us consider the machine depicted in Fig-
ure 2. In this case time values are stochastic,
that is, the time function assigns a random vari-
able to each transition. Depending on the system
that we are modelling, these random variables
will follow a specific probability distribution func-
tion. In this example we show three possible, of-
ten used, probability distribution functions. For
instance, we may consider that for all 1 ≤ j ≤ 5
we have that the ξ1j random variables are uni-
formly distributed in the interval [0, 3], that is,
they have F1 as associated probability distribu-

1b1/a4 b2/a3

M i
1

I = {b1, b2}, O = {a3, a4}
t1 = (s1, s1, b1, a4, [1, 3])
t2 = (s1, s1, b2, a3, [2, 4])

Figure 3. Example of TFSM: Time intervals.

tion function. Uniform distributions allow us to
keep compatibility with time intervals in (non-
stochastic) timed models in the sense that the
same weight is assigned to all the times in the in-
terval. We may consider that for all 1 ≤ j ≤ 3
we have that the ξ2j random variables follow a
Dirac distribution in 4, that is, they have F2 as
associated probability distribution function. A
Dirac distribution concentrates all the probabil-
ity in a single point, that is, a Dirac distribution
in n gives probability 1 to n and probability 0 to
the rest of values. In timed terms, the idea is that
the corresponding delay will be equal to n time
units. Dirac distributions allow us to simulate
deterministic delays appearing in timed models.
Finally, ξ31 and ξ32 are exponentially distributed
with parameter 3, that is, they have F3 as asso-
ciated probability distribution function.

For instance, let us consider the transition t12.
Intuitively, if the machine is in state 1 and re-
ceives the input a2 then it will produce the out-
put b1 after a time given by ξ13. Since ξ13 is
uniformly distributed in [0, 3] we have that, for
example, this time will be less than 1 time unit
with probability 1

3 , it will be less than 1.5 time
units with probability 1

2 , and so on. Finally, once
3 time units have passed we know that the output
b1 has been performed (that is, we have probabil-
ity 1).

In Figure 3 we present a TFSM where require-
ments on the time consumed by actions are given
by means of intervals. The initial state of M i

1

is the only state in the machine, labelled by 1.
Then, the transition t1 will take a time belonging
to [1, 3], that is, a time greater than or equal to
1 and less than or equal to 3. ⊓⊔
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Next, we introduce the notion of trace. As
usual, a trace is a sequence of input/output pairs.
In addition, we have to record the time that the
trace needs to be performed. An evolution is a
trace starting at the initial state of the machine.

Definition 4 Let M = (S, I,O, T r, sin) be a
TFSM. We say that (s, s′, (i1/o1, . . . , ir/or), d) is
a timed trace, or simply trace, of M if there ex-
ist (s, s1, i1, o1, d1),. . ., (sr−1, s

′, ir, or, dr) ∈ Tr,
such that d =

∑
di.

We say that (i1/o1, . . . , ir/or) is a non-timed
evolution, or simply evolution, of M if we have
that (sin, s

′, (i1/o1, . . . , ir/or), d) is a trace of M .
We denote by NTEvol(M) the set of non-timed
evolutions of M .

We say that the pair ((i1/o1, . . . , ir/or), d)
is a timed evolution of M if we have that
(sin, s

′, (i1/o1, . . . , ir/or), d) is a trace of M . We
denote by TEvol(M) the set of timed evolutions
of M .

Let n ≥ 1, i1, . . . , in ∈ I, and o1, . . . , on−1 ∈ O.
We define the set of outputs after the sequence
i1/o1, . . . , in−1/on−1, in as

setout(M, i1/o1, . . . , in−1/on−1, in) =



o ∈ O

∣∣∣∣∣∣∣∣

∃s, s′ ∈ S, d, d′ ∈ Time :
(sin, s, (i1/o1, . . . , in−1/on−1), d)

timed trace of M
∧ (s, s′, in, o, d

′) ∈ Tr





⊓⊔

Traces are sequences of transitions. The time
associated with a trace is computed from the
corresponding to each transition belonging to
the sequence. In fact, this time is obtained by
adding the time values associated with each of
the transitions conforming the trace. Let us re-
mark that the actual representation of time can
be abstracted. Specifically, when defining the
time d associated with a trace, we can give a
generic definition since addition is defined for
time fix values (as usual in real numbers) as
well as for time intervals and random variables
(see Definitions 1 and 2). The setout func-
tion will be used in the forthcoming Lemma 1
when we provide an alternative characterization

of our non-timed implementation relation. Intu-
itively, setout(M, i1/o1, . . . , in−1/on−1, in) com-
putes those outputs that can conform a transi-
tion together with in after the machine performs
the sequence i1/o1, . . . , in−1/on−1. Let us remark
that if the machine cannot perform the sequence
then setout will return the empty set.

Example 2 Let us consider again the TFSM

depicted in Figure 1 and its transitions t13,
t32, and t21. We can build the trace
(s1, s1, (a2/b2, a3/b3, a4/b4), 6) based on these
transitions. This trace represents that from state
1 the machine can accept the sequence of inputs
(a2, a3, a4) and it will emit the sequence of out-
puts (b2, b3, b4) after 6 time units pass. ⊓⊔

3.2. Testing hypotheses
In this section we describe the characteristics

and restrictions that we will consider along the
paper regarding implementations under test and
formal models.

We consider that models are given by TFSMs.
Regarding implementations, we also assume that
they are also given by means of TFSMs, more pre-
cisely, and following the classical assumption in
formal testing, we suppose that there exists a
model of the implementation that can be repre-
sented by an TFSM. Besides, we assume that input
actions are always enabled in any state of the im-
plementation, that is, implementations are input-
enabled according to Definition 3. This is a usual
condition to assure that the implementation will
react (somehow) to any input.

By now, and in order to simplify the presenta-
tion, we will consider that both specifications and
implementations are given by observable TFSMs
(see Definition 3). Let us note that even restrict-
ing to this kind of machines we may still have two
transitions (s, s1, i, o1, d1) and (s, s2, i, o2, d2), as
far as o1 6= o2. Thus, we allow some degree of
non-determinism in this first approach. In Sec-
tion 7 we will show how our framework can be
extended to deal with fully non-deterministic be-
haviors.

Regarding actions, we suppose that when
checking the validity of an implementation with
respect to a model, they have the same sets of
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inputs and outputs. Let us remark that this con-
dition can be always easily achieved by consid-
ering the union of the corresponding sets and
assuming that the sets of inputs and outputs
are given by these new sets. Formally, if we
have two TFSMs M1 = (S1, I1, O1, T r1, s

1
in) and

M2 = (S2, I2, O2, T r2, s
2
in) we can assume that

these two machines are in fact given by M1 =
(S1, I1 ∪ I2, O1 ∪O2, T r1, s

1
in) and M2 = (S2, I1 ∪

I2, O1 ∪ O2, T r2, s
2
in), respectively. In this paper

we do not explicitly consider a null action. Some
approaches based on finite state machines allow
inputs and outputs not to be always paired. In
this case, they assume the existence of special
symbols denoting the omission of the correspond-
ing input or output. We deal with these special
symbols in the same way as we do with any other
input or output. For example, if we are specify-
ing a machine such that there are input actions
that are not followed by an output then we will

use transitions such as s
i/null

−−−−−→ d s
′ and we will

consider that null belongs to the set of outputs.

4. Implementation relations

In this section we introduce our implementa-
tion relations. This kind of relations are a use-
ful theoretical tool to relate implementations and
specifications. The idea is that an implementa-
tion is related to a formal model iff the imple-
mentation is correct with respect to the model.
It is the meaning of correctness what produces
that there does not exist a unique way to de-
fine an implementation relation. In the case of
timed systems, what is a good implementation
is even less precise. For example, one may con-
sider that I is a good implementation of S if I
takes the same time to perform its tasks as S
while another could consider that the implemen-
tation has to be always/sometimes faster. Thus,
for each of these considerations, we will define a
different implementation relation. One may won-
der whether it is necessary to have more than
just one implementation relation, as it is usually
the case when dealing with systems where time
is not considered. The problem is that there is
not a good argument to consider that one imple-
mentation relation is better, in the sense that it

more accurately characterizes what a good imple-
mentation is, than another. Thus, in this paper
we will give different relations, for each possible
choice of the time domain. It will be the user
of our framework who will have to decide which
implementation relations better suites her idea of
what a good implementation is. In the same way,
in the forthcoming Section 5 we will not define
a unique way of what to successfully pass a test
means. For example, one may consider that in
order to successfully pass a test, the time that
it took to apply the test must be always smaller
than the one expected by the test while another
tester might think that in order to consider that
the application of a test was successful, the used
time had to be equal to the one expected by the
test. Again, it will be the tester who will decide
which notion she wants to use.

Even though, according to its timed behav-
ior, there are different possibilities to consider
what a good implementation is, there is an agree-
ment on correctness if we consider only functional
behavior, that is, abstracting time. Regarding
the performance of usual inputs and outputs, an
implementation I should not invent behaviors
when provided with inputs specified in the formal
model S. This means that the relevant evolutions
of I must be contained in those corresponding to
S. Thus, all our implementation relations follow
the same pattern: I conforms to S if for all pos-
sible evolution of S the outputs that the imple-
mentation I may perform after a given input are
a subset of those of S. This pattern is borrowed
from ioco [29,30]. However, we do not consider
quiescent states, that is, states where no external
outputs are available, since finite state machines,
and their variants, have a strict alternation be-
tween inputs and outputs. Thus, a notion of qui-
escence does not apply to this framework.

It is worth to mention that implementation re-
lations are usually related to some notion of pass-
ing tests. Thus, most formal testing theories have
results such as “a system is a good implementa-
tion with respect to a given implementation re-
lation iff the implementation successfully passes
a test suite extracted from the formal model.”
In our framework, as we will show in Sections 6
and 7.3, we have such results for the implemen-
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Figure 4. Examples of (non-)timely conformance.

tation relations defined in this paper.
First, we introduce an implementation relation

where time is not considered. This relation, firstly
introduced in [24], will be the basis to define the
rest of notions.

Definition 5 Let S and I be two TFSMs.
We say that I non-timely conforms to S,
denoted by I confnt S, if for all e =
(i1/o1, . . . , ir−1/or−1, ir/or) ∈ NTEvol(S), with
r ≥ 1, we have that

e′ = (i1/o1, . . . , ir−1/or−1, ir/o
′

r) ∈ NTEvol(I)
⇓

e′ ∈ NTEvol(S)

⊓⊔

As we said before, the idea underlying the def-
inition of the non-timely conformance relation
confnt is that the implementation does not in-
vent anything for those inputs that are speci-
fied in the formal model. Let us note that if
the model had also the property of input-enabled
then we could remove the condition “for all e =
(i1/o1, . . . , ir−1/or−1, ir/or) ∈ NTEvol(S), with
r ≥ 1.”

Example 3 Let us consider the systems S1 and
I1 depicted in Figure 4 (time information has not

been included since it is not relevant for this ex-
ample). We have I1 confnt S1. Let us note that
the non-timed evolutions of I1 having as prefix
the sequence (a2/b3, a2/b4) are not checked be-
cause the specification S1 cannot perform those
evolutions.

Let us now consider S2 and I2 as depicted in
the same figure. We have that I2 does not con-
form to S2. For example, S2 may perform the
non-timed evolution e = (a1/b1, a2/b2), I2 has
the non-timed evolution e′ = (a1/b1, a2/b1), but
e′ does not belong to the set of non-timed evolu-
tions of S2. Let us note that the sequence e′ has
to be checked since e and e′ have the same prefix
a1/b1, a2. ⊓⊔

Since the previously introduced implementa-
tion relation is the one that we will use to de-
fine the rest of implementation relations given
in this paper, it can be useful to have an al-
ternative definition. The following result states
that the confnt relation can be alternatively de-
fined by considering those outputs that can be
performed after some input/output sequences are
performed. These sequences are selected from
those that the formal model S can perform, that
is, we consider only those sequences e such that
setout(S, e) 6= ∅.

Lemma 1 Let S and I be two TFSMs. We
have that I confnt S iff for all sequence of in-
put/outputs i1/o1, . . . , in−1/on−1, in such that
setout(S, i1/o1, . . . , in−1/on−1, in) 6= ∅ we have

setout(I, i1/o1, . . . , in−1/on−1, in)
⊆

setout(S, i1/o1, . . . , in−1/on−1, in)

⊓⊔

Next we introduce our first timed implementa-
tion relations distinguishing the cases where tem-
poral requirements are specified by a time value, a
random variable, and a time interval. In addition
to the non-timed conformance of the implementa-
tion, we require some time conditions to hold. As
we explained before, the different considerations
of time produce that there is not a unique way to
define an implementation relation.
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4.1. Fix time implementation relations
We present two relations for the case when time

is expressed by fix values. In the confa relation
(conforms always) we consider that for all timed
evolution (e, t) of the implementation, if e is a
non-timed evolution of the model S then (e, t)
is also a timed evolution of S. With this rela-
tion we express that the implementation mimics
the timed behavior of the formal model. In the
confb relation (conforms in the best case) the im-
plementation is forced, for each timed evolution
fulfilling the previous conditions, to be faster than
the timed evolution in the model. This implemen-
tation relation expresses that the implementation
is faster than the model. Let us remark that since
we are considering observable machines, there is
at most one evolution fulfilling the previous con-
ditions. In Section 7 we will see that the removal
of this restriction gives rise to multiple alternative
notions because, for each e, there can be several
time values t such that (e, t) is a timed evolution.

Definition 6 Let S and I be two TFSMs. We
define the following implementation relations:

• (always) I confa S iff I confnt S and for all
e ∈ NTEvol(I)∩NTEvol(S) we have that for
all time value t ∈ IR+

(e, t) ∈ TEvol(I) =⇒ (e, t) ∈ TEvol(S)

• (best) I confb S iff I confnt S and for all
e ∈ NTEvol(I) ∩ NTEvol(S) we have that
for all time value t ∈ IR+

(e, t) ∈ TEvol(I)
⇓

∃ t′ ∈ IR+ : ((e, t′) ∈ TEvol(S) ∧ t ≤ t′)
⊓⊔

Let us remark that since confnt is a require-
ment for confa and confb, we can restrict our-
selves to study time values associated with evo-
lutions common to both S and I. This is due
to the fact that the implementation cannot show
unexpected evolutions. That is the reason why
we consider NTEvol(I) ∩ NTEvol(S). Something
similar happens in all the timed implementation
relations presented along this paper.

4.2. Stochastic implementation relations
Next we introduce our first implementation re-

lation for finite state machines where time re-
quirements are defined by using random variables.

Definition 7 Let I and S be two TFSMs. We say
that I stochastically conforms to S, denoted by
IconfsS, if IconfntS and for all e ∈ NTEvol(I)∩
NTEvol(S) we have that for all random variable
ξ ∈ V

(e, ξ) ∈ TEvol(I)
⇓

∃ ξ′ ∈ V : ((e, ξ′) ∈ TEvol(S) ∧ ξ = ξ′)

⊓⊔

In addition to requiring the notion of non-
timely conformance, we have to ask for some con-
ditions on the corresponding random variables.
Thus, I confs S also requires that all timed evo-
lutions of S that can be performed by the imple-
mentation must have identically distributed ran-
dom variables. Even though this is a very rea-
sonable notion of conformance, the fact that we
assume a black-box testing framework disallows
us to check whether the corresponding random
variables are identically distributed. In fact, we
would need an infinite number of observations
from a random variable of the implementation
(with an unknown distribution) to assure that
this random variable is distributed as another
random variable from the formal model (with a
known distribution). Thus, we have to give more
realistic implementation relations based on a fi-
nite set of observations. We will present other im-
plementation relations that are less accurate but
are checkable. We only need to suppose that we
can actually record the time that the implemen-
tation needs to perform a given sequence.

Definition 8 Let I be a TFSM. We say that
((i1/o1, . . . , in/on), t) is the observed timed ex-
ecution of I, or simply timed execution, if
the observation of I shows that the sequence
(i1/o1, . . . , in/on) is performed in time t.

Let Φ be a set of input/output sequences
and H = {|(e1, t1), . . . , (en, tn)|} be a multiset
of timed executions. We say that the function
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Sampling(H,Φ) : Φ −→ ℘(IR+) is a sampling ap-
plication of H for Φ if for all e ∈ Φ we have
Sampling(H,Φ)(e) = {|t | (e, t) ∈ H |}. ⊓⊔

Timed executions are input/output sequences
together with the time that it took to perform the
sequence. In a certain sense, timed executions
can be seen as instances of the evolutions that
the implementation can perform. Regarding the
definition of sampling applications, we just asso-
ciate with each evolution the observed execution
time values. These time values will be compared,
by using a contrast hypothesis, with the random
variable associated with the same evolution in the
model.

Definition 9 Let I and S be two TFSMs, H be
a multiset of timed executions of I, 0 ≤ α ≤ 1,
and Φ = {e | ∃ t : (e, t) ∈ H} ∩ NTEvol(S). We
say that I (α,H)−stochastically conforms to S,

denoted by I conf(α,H)
s S, if I confntS and for all

evolution e ∈ Φ we have that (e, ξ) ∈ TEvol(S)
implies γ(ξ, Sampling(H,Φ)(e)) > α. ⊓⊔

The idea underlying the new relation is that the
implementation must conform to the specification
in the usual way (that is, I confnt S). Besides,
for all evolution of the implementation that can
be performed by S and that has been observed
(i.e. it is included in H), the observed execution
time values fit the random variables indicated by
S. This notion of fitting is given by the function
γ that is formally defined in the appendix. Let us
remark that the set H plays a fundamental role
in the previous definition and in the forthcom-
ing implementation relations dealing either with
stochastic time or with time intervals. The idea
is that the bigger the set H is, the more confi-
dent we are that the hypothesis contrast (that is,
the application of γ) returns a result that reflects
the real situation of the implementation with re-
spect to the model. Obviously, if H is too small
then the knowledge that we have about the tem-
poral behavior of the implementation is very lim-
ited and it is more likely that we reach a wrong
conclusion. We will comment on this point again
in Section 5.2 when we define how to test timed
systems where time information is given by means
of random variables.

A first direct result says that if we decrease the
confidence level then we keep conformance.

Lemma 2 Let I and S be two TFSMs such that
I conf

(α1,H)
s S. If α2 < α1 then we have

I conf
(α2,H)
s S. ⊓⊔

The next result, whose proof is straightforward,
says that if we have two samples sharing some
properties then our conformance relation gives
the same result for both of them.

Lemma 3 Let I and S be two TFSMs, H1, H2

be multisets of timed executions for I, and bi =
{|(e, t) |(e, t) ∈ Hi ∧ e ∈ NTEvol(I)∩NTEvol(S)|},

for i = {1, 2}. If b1 = b2 then we have Iconf(α,H1)
s

S iff I conf
(α,H2)
s S. ⊓⊔

During the rest of this section we present dif-
ferent variations of the previous implementation
relation. First, we define the concept of shifting
a random variable with respect to its mean. For
example, let us consider a random variable ξ fol-
lowing a Dirac distribution in 4 (see Example 1
for the formal definition). If we consider a new
random variable ξ′ following a Dirac distribution
in 3, we say that ξ′ represents a shift of ξ. More-
over, we also say that ξ and ξ′ belong to the same
family.

Definition 10 We say that ξ′ is a mean shift
of ξ with mean M ′, and we denote it by ξ′ =
MShift(ξ,M ′), if ξ, ξ′ belong to the same family
and the mean of ξ′, denoted by µξ′ , is equal to
M ′.

Let I and S be two TFSMs, H be a multiset
of timed executions of I, 0 ≤ α ≤ 1, and Φ =
{e | ∃ t : (e, t) ∈ H} ∩ NTEvol(S). We say that
I (α,H)−stochastically conforms to S with speed

π, denoted by Iconfm
(α,H)
π S, if I confnt S and

for all e ∈ Φ we have that (e, ξ) TEvol(S) implies
γ(MShift(ξ, µξ · π), Sampling(H,Φ)(e)) > α. ⊓⊔

An interesting remark regarding this new rela-
tion is that when α is small enough and/or π is
close enough to 1, it may happen that we have
both I conf(α,H)

s S and Iconfm(α,H)
π S. Neverthe-

less, it is enough to increase α, as far as π 6= 1,
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so that we do not have both results simultane-
ously. Let us note that in the previous notion, a
value of π greater than 1 indicates that the im-
plementation is slower. This observation induces
the following relation.

Definition 11 Let I and S be two TFSMs and H
be a multiset of timed executions of I. We say
that I is generally faster (respectively generally
slower) than S for H if there exist 0 ≤ α ≤ 1
and 0 < π < 1 (respectively π > 1) such that

Iconfm
(α,H)
π S but I conf(α,H)

s S does not hold.
⊓⊔

Given the fact that, in our framework, an im-
plementation I could fit better a model S with
higher or lower speed, it will be interesting to de-
tect which variations of speed would make the im-
plementation to fit better the model. Intuitively,
the best variation will be the one allowing I to
conform to S with a higher level of confidence α.

Definition 12 Let I and S be two TFSMs and
H be a multiset of timed executions of I. Let
us consider 0 ≤ α ≤ 1 and π ∈ IR+ such that
Iconfm

(α,H)
π S and there do not exist α′ > α and

π′ ∈ IR+ with Iconfm
(α′,H)
π′ S. Then, we say that

π is a relative speed of I with respect to S for H .
⊓⊔

The concept of relative speed allows us to
define another implementation relation which
is more restrictive than those presented so
far. Basically, the implementation must both
(α,H)−stochastically conform to S and have 1 as
a relative speed. Let us note that the latter condi-
tion means that the implementation fits perfectly
in its current speed. However, let us remark that
this new notion corresponds neither to our first
implementation relation (see Definition 7) nor to
have a confidence level α equal to 1.

Definition 13 Let I and S be two TFSMs,H be a
multiset of timed executions of I, and 0 ≤ α ≤ 1.
We say that I (α,H)−stochastically and precisely
conforms to S, denoted by I confp(α,H) S, if
I conf

(α,H)
s S and 1 is a relative speed of I with

respect to S for H . ⊓⊔

The following result relates some of the notions
presented in this section.

Lemma 4 Let I and S be two TFSMs. We have
I confp(α,H) S iff I conf

(α,H)
s S and neither I is

generally faster than S for H nor I is generally
slower than S for H . ⊓⊔

4.3. Time intervals implementation rela-
tions

In this case, time requirements are given by
means of intervals. Next, we present our first
timed implementation relation for this kind of
systems.

Definition 14 Let I and S be two TFSMs. We
say that I conforms in time to S, denoted by
I confint S, if I confnt S and for all e ∈
NTEvol(I) ∩ NTEvol(S) we have that for all time
interval t̂ ∈ IIR+

(e, t̂) ∈ TEvol(I) =⇒ (e, t̂) ∈ TEvol(S)

⊓⊔

It is worth to point out that this relation suffers
from the same practical problems as the relation
introduced in Definition 7 for stochastic time. As
we argued in the case of stochastic time, this no-
tion of conformance, when used in a black-box
testing framework, prevents us to ascertain if the
intervals corresponding to the model and to the
implementation are equal. In order to avoid this
problem, we will apply a method similar to the
one we have used in the previous section, based
on a finite set of observations. However, we do
not need to apply a contrast hypothesis: We will
simply check that the observed time values belong
to the specified time interval. Having this idea in
mind, we will define three conformance relations
where we check that the observed time values ful-
fill, in each case, the appropriate constraints.

Definition 15 Let I and S be two TFSMs, H
be a multiset of timed executions of I, and
Φ = {e | ∃ t : (e, t) ∈ H} ∩ NTEvol(S).
For all non-timed evolution e ∈ Φ we define
the sample interval of e in H as Ŝ(H,e) =
[min(Sampling(H,Φ)(e)), max(Sampling(H,Φ)(e))].
We define the following implementation relations:
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• I H−timely conforms to S, denoted by
I confH

int S, if I confnt S and for all e ∈ Φ
we have that for all time interval t̂ ∈ IIR+

(e, t̂) ∈ TEvol(S) =⇒ Ŝ(H,e) ⊆ t̂

• I H−fast timely conforms to S, denoted by
I confH

intf S, if I confnt S and for all e ∈ Φ

we have that for all time interval t̂ ∈ IIR+

(e, t̂) ∈ TEvol(S) =⇒ Ŝ(H,e) ≪ t̂

• I H−preferable timely conforms to S, de-
noted by I confH

intp S, if I confnt S and for
all e ∈ Φ we have that for all time interval
t̂ ∈ IIR+

(e, t̂) ∈ TEvol(S) =⇒ Ŝ(H,e) � t̂
⊓⊔

Intuitively, the new relations establish that
the implementation must conform to the speci-
fication in the usual way (that is, I confnt S).
In addition, the observed execution time values
corresponding to an evolution must belong to
the time interval indicated by the specification
for that evolution (timely conforms), or be less
than or equal to the lower/upper bound (fast
timely conforms/preferable timely conforms) re-
spectively. Let us remind that the relations be-
tween intervals ⊆, ≪, and � were introduced in
Definition 1.

5. Definition and application of tests

A test represents a sequence of inputs applied
to the implementation. After applying each in-
put, we check whether the received output is the
expected one or not. In the latter case, a fail sig-
nal is produced. In the former case, either a pass
signal is emitted (indicating successful termina-
tion) or the testing process continues by applying
another input. If we are testing an implementa-
tion with input and output sets I and O, respec-
tively, tests are deterministic acyclic I/O labelled
transition systems (i.e. trees) with a strict alter-
nation between an input action and the set of out-
put actions. After an output action we may find

either a leaf (indicating either failure or success-
ful termination) or another input action. Leaves
can be labelled either by pass or by fail. In the
first case we add a time stamp. Depending on the
kind of time requirements that are used to define
the considered system, the time stamp will be a
time value, a random variable, or a time interval.
The idea is that we will record the time that the
implementation takes to arrive to that point and
compare it with the time stamp.

Definition 16 A test is a tuple T =
(S, I,O, T r, s0, SI , SO, SF , SP , CT ) where S is the
set of states, I and O are disjoint sets of input and
output actions, respectively, Tr ⊆ S× (I∪O)×S
is the transition relation, s0 ∈ S is the initial
state, and the sets SI , SO, SF , SP ⊆ S are a par-
tition of S. The transition relation and the sets
of states fulfill the following conditions:

• SI is the set of input states. We have
that s0 ∈ SI . For all input state s ∈ SI

there exists a unique outgoing transition
(s, a, s′) ∈ Tr. For this transition we have
that a ∈ I and s′ ∈ SO.

• SO is the set of output states. For all output
state s ∈ SO we have that for all o ∈ O there
exists a unique state s′ such that (s, o, s′) ∈
Tr. In this case, s′ /∈ SO. Moreover, there
do not exist i ∈ I and s′ ∈ S such that
(s, i, s′) ∈ Tr.

• SF and SP are the sets of fail and pass
states, respectively. We say that these
states are terminal. That is, for all state
s ∈ SF ∪ SP we have that there do not
exist a ∈ I ∪ O and s′ ∈ S such that
(s, a, s′) ∈ Tr.

Finally, CT is a function associating time stamps
with passing states. Depending on the kind of
time associated to the system that we are testing,
the range of the function will correspond to the
appropriate set. As expected, we will consider
functions CT : SP −→ IR+ for fix time values,
CT : SP −→ V for time requirements expressed
by random variables, and CT : SP −→ IIR+ for
time intervals.
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Figure 5. Examples of Test Cases: I = {a1, a2}
and O = {b3, b4, b5}.

Let e = i1/o1, . . . , ir/or and sT ∈ SF ∪

SP . We write T
e

=⇒ sT if there exist
states s12, s21, s22, . . . sr1, sr2 ∈ S such that
{(s0, i1, s12), (sr2, or, s

T )} ⊆ Tr, for all 2 ≤ j ≤ r
we have (sj1, ij , sj2) ∈ Tr, and for all 1 ≤ j ≤
r − 1 we have (sj2, oj , s(j+1)1) ∈ Tr.

We say that a test case T is valid if the graph
induced by T is a tree with root at the initial state
s0. We say that a set of tests Tst = {T1, . . . , Tn}
is a test suite. ⊓⊔

In Figure 5 we present some examples of tests
(in order to improve legibility, time stamps are
omitted). From now on we will assume that when
we talk about tests we refer only to valid tests.
Next we define the application of a test to an im-
plementation. We will say that the test suite Tst

is passed if for all test the terminal states reached
by the composition of implementation and test
belong to the set of passing states.

Definition 17 Let I be a TFSM and T be a valid
test. We denote the application of the test T to
the implementation I by I ‖ T .

Let sT be a state of T . We write I ‖ T
e

=⇒

sT if T
e

=⇒ sT and e ∈ NTEvol(I). Let Tst

be a test suite. We say that I passes Tst,
denoted by pass(I, Tst), if for all test T =
(S, I,O, T r, s0, SI , SO, SF , SP , CT ) ∈ Tst and e ∈

NTEvol(I) there do not exist sT ∈ S such that
I ‖ T

e
=⇒ sT and sT ∈ SF . ⊓⊔

Let us remark that since we are assuming that
implementations are input-enabled, the testing
process will conclude only when the test reaches
either a fail or a success state. In addition to
this notion of passing tests, we will have different
time conditions. Given the fact that this aspect
depends on the three time domains that we are
considering all along the paper, we will present
them separately.

5.1. Fix time values
Regarding time expressed by means of fix val-

ues, we will consider two notions of passing tests.
These two notions correspond to the implementa-
tion relations that we introduced in Section 4.1.

Definition 18 Let I be a TFSM, T be a test, and
sT be a state of T . We write I ‖ T

e
=⇒t s

T if
T

e
=⇒ sT and (e, t) ∈ TEvol(I).
Let σ = (e, t) ∈ TEvol(I) and Tst be a

test suite. We define the set Test(σ, Tst) =

{(T, sT ) | T ∈ Tst ∧ I ‖ T
e

=⇒t s
T }.

We say that I passes the test suite Tst for
all time if pass(I, Tst) and for all σ = (e, t) ∈
TEvol(I) and all (T, sT ) ∈ Test(σ, Tst) we have
that t = C(sT ) holds.

We say that I passes the test suite Tst in the
best time if pass(I, Tst) and for all σ = (e, t) ∈
TEvol(I) and all (T, sT ) ∈ Test(σ, Tst) we have
that t ≤ C(sT ) holds. ⊓⊔

5.2. Stochastic time
In this case we apply the time conditions to

the set of observed timed executions, not to timed
evolutions of the implementations, due to the fact
that timed evolutions, in this domain, do not have
a single time value that we can directly compare
with the time stamp attached to the pass state.
In fact, we need a set of test executions associ-
ated to each evolution in order to evaluate if they
match the probability distribution function asso-
ciated to the random variable indicated by the
corresponding state of the test. In order to in-
crease the degree of reliability, we will not take
the classical approach where passing a test suite
is defined according only to the results for each
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test. In our approach, we will put together all the
observations, for each test, so that we have more
instances for each evolution. In particular, some
observations will be used several times. In other
words, an observation from a given test may be
used to check the validity of another test shar-
ing the same observed sequence. We will later
show that this notion of passing tests is related
to the implementation relation introduced in Def-
inition 9.

Definition 19 Let I be a TFSM, T be a test, and
sT be a state of T . We write I‖T

e
=⇒t s

T if T
e

=⇒
sT and (e, t) is an observed timed execution of I.
In this case we say that (e, t) is a test execution
of I and T .

Let I be a TFSM and Tst = {T1, . . . , Tn} be
a test suite. Let H1, . . . , Hn be test execution
samples of I and T1, . . . , Tn, respectively. Let
H =

⋃n
i=1Hi, Φ = {e | ∃ t : (e, t) ∈ H}, and

let us consider 0 ≤ α ≤ 1. We say that I (α,H)-
passes the test suite Tst if pass(I, Tst) and for all
e ∈ Φ and all T ∈ Tst such that I ‖ T

e
=⇒ sT , we

have that γ(CT (sT ), Sampling(H,Φ)(e)) > α. ⊓⊔

Let us note that an observed timed execution
does not return the random variable associated
with performing the evolution (that is, the ad-
dition of all the random variables corresponding
to each transition of the implementation) but the
time that it took to perform the evolution. Let
us also note that in a fix time values framework,
these two notions (addition of time values cor-
responding to the transitions of the implementa-
tion and observed time) do in fact coincide. In-
tuitively, an implementation passes a test if there
does not exist an evolution leading to a fail state.
Once we know that the functional behavior of the
implementation is correct with respect to the test,
we need to check time conditions. The set H cor-
responds to the observations of the (several) ap-
plications to I of the tests belonging to the test
suite Tst. In other words, observed timed exe-
cutions will be used to conform the correspond-
ing execution samples. Let us intuitively explain
the process. We will apply each test belonging
to the test suite to the implementation several
times. If we find an unexpected output then we

stop the testing process and conclude that the
implementation is faulty without further check-
ing its temporal behavior. If we do not find
such an error, for each test we collect several
observed timed executions corresponding to each
time that the application of the test reached a
pass state. Thus, we obtain for each test Ti a mul-
tiset {|(ei

1, t
i
1), (e

i
2, t

i
2), . . . , (e

i
m, t

i
m)|}. These mul-

tisets, more exactly the time values corresponding
to each different evolution, will be used to make
the hypothesis contrast. Thus, we have to decide
whether, for each evolution e, the observed time
values (that is, Sampling(H,Φ)(e)) match the def-
inition of the random variables appearing in the
successful state of the tests corresponding to the
execution of that evolution (that is, CT (sT )). As
we previously commented, we assume a function
γ, formally defined in the appendix, that can per-
form this hypothesis contrast.

Let us remark that the quality of the testing
process depends not only on the considered test
suite but also on the size of the execution sam-
ples. As we previously pointed out, the bigger
these samples are, indicating that we were apply-
ing the tests more times without finding a func-
tional error, the bigger will be the credibility of
the testing process assessment. This is similar to
the situation in testing non-deterministic systems
where a fairness assumption cannot be made: We
have to apply the same test several times (the
more, the better) to increase the confidence that
all the non-deterministic choices are exercised.

5.3. Time intervals
Finally, we consider the case when time is given

by means of intervals. Following the idea pre-
sented in Section 4.3, we will have to check that
the time values observed when executing tests
(belonging to sampling sets) do fulfill the ade-
quate conditions. We apply the notion of passing
a test in the same way that we have presented for
stochastic time. In fact, the notion of test execu-
tion introduced in Definition 19 is still valid and
we do not repeat it. As we did in the stochastic
setting, the set H corresponds again to the obser-
vations of the (several) applications of tests from
the test suite Tst to I. We have defined different
ways to establish if an implementation passes a



16 Mercedes G. Merayo, Manuel Núñez and Ismael Rodríguez

test suite, depending on the restrictions that the
observed time values hold.

Definition 20 Let I be a TFSM and Tst =
{T1, . . . , Tn} be a test suite. Let H1, . . . , Hn be
test execution samples of I and T1, . . . , Tn, re-
spectively. Let H =

⋃n
i=1Hi and Φ = {e | ∃ t :

(e, t) ∈ H}. We say that

• I H-passes in time the test suite Tst if
pass(I, Tst) and for all e ∈ Φ and all T ∈ Tst

such that I ‖ T
e

=⇒ sT , we have that
Ŝ(H,e) ⊆ CT (sT ).

• I H-passes fast the test suite Tst if
pass(I, Tst) and for all e ∈ Φ and all T ∈ Tst

such that I ‖ T
e

=⇒ sT , we have that
Ŝ(H,e) ≪ CT (sT ).

• I H-passes preferable the test suite Tst if
pass(I, Tst) and for all e ∈ Φ and all T ∈

Tst such that I ‖ T
e

=⇒ sT , we have that
Ŝ(H,e) � CT (sT ).

⊓⊔

6. Derivation of test suites

In this section we present an algorithm to de-
rive tests from TFSMs. These test suites are sound
and complete with respect to the implementation
relations introduced in Section 4.

6.1. Derivation algorithm
The basic idea underlying test derivation con-

sists in traversing the specification in order to get
all the possible evolutions in an appropriate way.
First, we introduce some additional notation.

Definition 21 Let M = (S, I,O, T r, sin) be a
TFSM. We define the function out : S×I −→ P(O)
such that for all s ∈ S and i ∈ I it returns the set
of outputs

out(s, i) = {o | ∃ s′, d : (s, s′, i, o, d) ∈ Tr}

We define the function after : S × I × O ×
Time −→ ((S × Time) ∪ {error}) such that for
all s ∈ S, i ∈ I, o ∈ O, and d ∈ Time we have

after(s, i, o, d)=

{
(s′, d+ d′) if (s, s′, i, o, d′)∈ Tr

error otherwise

⊓⊔

The function out(s, i) computes the set of out-
put actions associated with those transitions that
can be executed from s after receiving the input i.
The function after(s, i, o, d) computes the situa-
tion that is reached from a state s after receiving
the input i, producing the output o, when the
duration of the previous testing process is d. By
situation we mean a pair containing the reached
state and the cumulated duration since the sys-
tem started its performance. Let us also remark
that due to the assumption that TFSMs are ob-
servable we have that after(s, i, o, d) is uniquely
determined. Besides, let us note that the addi-
tion of time values given by the expression d+ d′

will denote, depending on the machine, the addi-
tion of two real numbers, two random variables,
or two intervals. Finally, we will apply this func-
tion only when the side condition holds, that is,
we will never receive error as result of applying
after.

The algorithm to derive tests from a specifica-
tion is given in Figure 6. By considering the pos-
sible available choices we get a test suite extracted
from M . We denote this test suite by tests(M).
Next we explain how our algorithm works. A
set of pending situations Saux keeps those tuples
denoting the possible states and duration values
that could appear in a state of the test whose out-
going transitions have not been completed yet.
More precisely, a tuple (sM , d, sT ) ∈ Saux indi-
cates that we did not complete the state sT of
the test, the current state in the traversal of the
specification is sM , and the accounting for the
elapsed duration in the specification from the ini-
tial state is given by d.

Our algorithm can be applied in the different
domains we consider along the work. For each of
them, we use an appropriate time function asso-
ciated to the kind of machine to which we apply
the algorithm. That is, the accumulated duration
(i.e. the value d) will be a time value, a random
variable, or a time interval.

Following with the explanation of the algo-
rithm, the set Saux initially contains a tuple with
the initial states (of both TFSM and test) and the
initial situation of the process (that is, duration
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Input: A TFSM M = (S, I,O, T ran, sin).
Output: A test case T = (S′, I, O, T ran′, s0, SI , SO, SF , SP , CT ).

Initialization: S′ := {s0}; Tran′, SI , SO, SF , SP := ∅; Saux := {(sin, zero, s0)}.
Inductive Cases: Choose one of the following two options until Saux = ∅.

1. If (sM , d, sT ) ∈ Saux then perform the following steps:

{sT will be a pass state; time values computed while applying the}

{test and reaching this state will be compared with d}

(a) Saux := Saux − {(sM , d, sT )}; SP := SP ∪ {sT }; CT (sT ) := d.

2. If Saux = {(sM , d, sT )} and ∃ i ∈ I : out(sM , i) 6= ∅ then perform the following steps:

(a) Saux := ∅; Choose i such that out(sM , i) 6= ∅.

(b) Consider a fresh state s′ /∈ S′ and let S′ := S′ ∪ {s′}.

(c) SI := SI ∪ {sT}; SO := SO ∪ {s′}; Tran′ := Tran′ ∪ {(sT , i, s′)}.

{Add an input transition labelled by i and consider all outputs}

(d) For all o /∈ out(sM , i) do {These outputs lead to a fail state}

• Consider a fresh state s′′ /∈ S′ and let S′ := S′ ∪ {s′′}.

• SF := SF ∪ {s′′}; Tran′ := Tran′ ∪ {(s′, o, s′′)}.

(e) For all o ∈ out(sM , i) do

{These outputs are expected. At most one of them will lead to an input state}

{where the test continues; the rest will lead to pass states}

• Consider a fresh state s′′ /∈ S′ and let S′ := S′ ∪ {s′′}.

• Tran′ := Tran′ ∪ {(s′, o, s′′)}.

• (sM
1 , d′) := after(sM , i, o, d); Saux := Saux ∪ {(sM

1 , d
′, s′′)}.

Figure 6. Derivation of tests from an observable specification.

zero). If we are extracting tests from a TFSM

where time is given by fix time values, zero de-
notes that the elapsed time is 0 ∈ IR+. If we con-
sider time given by using random variables, zero
denotes a random variable ξ following a Dirac dis-
tribution in 0, that is, Fξ(x) = 1 for all x ∈ IR+.
Finally, in the case of time intervals we mean
[0, 0]. For each tuple belonging to Saux we may
choose one possibility. It is important to remark
that the second step can be applied only when the
set Saux becomes singleton. So, our derived tests
correspond to valid tests as introduced in Def-
inition 16. The first possibility simply indicates
that the state of the test becomes a passing state.

The second possibility takes an input and gener-
ates a transition in the test labelled by this input.
Then, the whole sets of outputs is considered. If
the output is not expected by the TFSM (step 2.(e)
of the algorithm) then a transition leading to a
failing state is created. This could be simulated
by a single branch in the test, labelled by else,
leading to a failing state (in the algorithm we sup-
pose that all the possible outputs appear in the
test). For the expected outputs (step 2.(f) of the
algorithm) we create a transition with the corre-
sponding output and add the appropriate tuple
to the set Saux.
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Let us note that finite tests are constructed
simply by considering a step where the second
inductive case is not applied.

Let us comment on the finiteness of our algo-
rithm. If we do not impose any restriction on
the implementation (e.g. a bound on the num-
ber of states) we cannot determine some impor-
tant information such as the maximal length of
the traces that the implementation can perform.
In other words, as commented more thoroughly
in the forthcoming Section 8 devoted to related
work, we would need a fault coverage criterion to
generate a finite test suite. Actually, this is also
the case in work related to ours such as the ioco

theory [29]. Obviously, one can impose restric-
tions such as “generate n tests” or “generate all
the tests with m inputs” and completeness will
be obtained up to that coverage criterion. Since
we do not assume, by default, any criteria, all we
can do is to say that this is the, in general, test
suite that allows to prove completeness, that is,
we obtain full fault coverage but taking into ac-
count that the derived test suite will be, in gen-
eral, infinite. This can be seen in the forthcoming
Theorems 1, 2, and 3 where we show that an im-
plementation conforms to a formal model iff the
implementation passes all the tests belonging to
the test suite. Finally, let us remark that even
if the derived test suite is infinite, it can still be
taken as a first step to generate finite test suites
(contained in it) with respect to a given fault cov-
erage criterion. In this line, it is very easy to con-
sider a fault coverage criterion based on check-
ing the behavior of systems up to a given length.
That is, in order to ensure that the implementa-
tion under test is correct in its first n steps (that
is, for input/output sequences having length less
than or equal to n), it is enough to consider the
subset of the derived test suite including those
tests having that length. However, the topic of
adapting our framework to deal with this issue is
outside the scope of this paper.

Regarding the computational complexity of the
algorithm we have to distinguish two cases. If
the specification has loops then the derived test
suite is infinite. This is due again to the fact
that we do not assume any hypothesis regard-
ing the implementation where these tests will be

applied. Thus, we cannot limit the size of the
tests. If the specification does not have loops then
the number of tests appearing in the test suite
is, in the worst case, exponential with respect to
the number of states of the specification. The
idea is that the test suite contains all the possible
paths/sequences that can be performed from the
initial state of the specification. In order to find
a fault in the implementation we have to detect
that one of these feasible paths is not performed
in the expected way, that is, after applying one
of the inputs conforming the sequence we receive
an unexpected output. Let us remark that these
numbers are usual in test derivation algorithms
based on ioco.

6.2. Soundness and completeness
Next, we present the results that relate imple-

mentation relations and application of test suites
derived from a model described as a TFSM. The
non-timed aspects of our algorithm are based on
the algorithm developed for the ioco relation. So,
in spite of the differences, the non-timed part of
the proof of our result is a simple adaptation of
that in [29]. Regarding the part of the proof re-
lated to time issues, the result holds because the
temporal conditions required to conform to the
model and to pass the test suite are in fact the
same. We will give the detailed proof for the
implementation relations for machines presenting
time requirements expressed by means of fix time
values. Next, we will sketch how the result can
be adapted for the other two notions of time con-
sidered in this paper.

Theorem 1 Let S and I be two TFSMs. We have
that:

• I confa S iff I passes tests(S) for all time.

• I confb S iff I passes tests(S) in the best
time.

Proof : We will only prove the first result since
the technique is similar for the second one. First,
let us show that I passes tests(S) for all time
implies I confa S. We will use the contraposi-
tive, that is, we will suppose that I confa S does
not hold and we will prove that I does not pass
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tests(S) for all time. If I confa S does not hold
then we have two possibilities:

• Either I confnt S does not hold, or

• there exists a temporal evolution (e, t) ∈
TEvol(I) such that e ∈ NTEvol(S) and
(e, t) 6∈ TEvol(S).

Let us consider the first case, that is, we sup-
pose that I confnt S does not hold. Then,
there exist two non-timed evolutions e =
(i1/o1, . . . , ir/or) and e′ = (i1/o1, . . . , ir/o

′

r),
with r ≥ 1, such that e ∈ NTEvol(S),
e′ ∈ NTEvol(I), and e′ 6∈ NTEvol(S). We
have to show that there exists a test T =
(S, I,O, T r, s0, SI , SO, SF , SP , CT ) ∈ tests(S)

such that T
e

=⇒ sT , with sT ∈ SP , and T
e′

=⇒ uT ,
with uT ∈ SF . In this situation, we would con-
clude I does not pass tests(S). We can con-
struct this test by applying the algorithm given
in Figure 6 and by resolving the non-deterministic
choices in the following way:

for 1 ≤ j ≤ r do
• apply 2nd inductive case for input ij
• apply 1st inductive case for all elements

(sM , d, sT ) ∈ Saux obtained by processing
an output different from oj

endfor

apply 1st inductive case for last element
(sM , d, sT ) ∈ Saux

The previous algorithm generates a test T such

that T
e′

=⇒ uT , with uT ∈ SF . This is so be-
cause the last application of the second inductive
case for the output o′r must be necessarily asso-
ciated to the step 2.(e) since e′ 6∈ NTEvol(S). In
addition, we have that if e′ ∈ NTEvol(I) then

I ‖ T
e′

=⇒ uT . Given the fact that T ∈ tests(S)
we deduce that pass(I, tests(S)) does not hold.
Thus, we conclude I does not pass tests(S) for
all time.

Let us suppose now that IconfaS does not hold
because there exists a temporal evolution (e, t) ∈
TEvol(I) such that e ∈ NTEvol(S) but (e, t) 6∈
TEvol(S). Let us consider the same test T that
we defined before by taking into consideration the
evolution e. Since e ∈ NTEvol(S) we have that

T
e

=⇒ sT , with sT ∈ SP . Besides, since (e, t) ∈

TEvol(I), we also have I ‖ T
e

=⇒t s
T . If (e, t) 6∈

TEvol(S) then t 6= CT (sT ). We conclude I does
not pass tests(S) for all time.

Next we prove that I confa S implies I passes
tests(S) for all time. We will use again the con-
trapositive, that is, we will assume that I does
not pass tests(S) for all time and we will con-
clude that I confa S does not hold. If I does
not pass tests(S) for all time then we have two
possibilities:

• Either pass(I, tests(S)) does not hold, or

• there exists (e, t) ∈ TEvol(I) and (T, sT ) ∈

Test(e, tests(S)) such that I ‖ T
e

=⇒t s
T ,

with sT ∈ SP , and t 6= CT (sT ).

First, let us assume that I does not pass
tests(S) for all time because pass(I, tests(S))
does not hold. This means that there exists
a test T ∈ tests(S), a non-timed evolution
e = (i1/o1, . . . , ir−1/or−1, ir/or), and sT ∈ SF

fulfilling I ‖ T
e

=⇒ sT . Then, we have e ∈

NTEvol(I) and T
e

=⇒ sT . According to our
derivation algorithm, a branch of a derived test
leads to a fail states only if its associated out-
put action is not expected in the specification.
Thus, e 6∈ NTEvol(S). Let us note that our
algorithm allows to create a fail state only as
the result of the application of the second induc-
tive case. One of the premises of this inductive
case is out(SM , i) 6= ∅, that is, the specification
is allowed to perform some output actions after
the reception of the corresponding input. Thus,
there exists an output action o′r and an evolution
e′ = (i1/o1, . . . , ir−1/or−1, ir/o

′

r) such that e′ ∈
NTEvol(S). Given the fact that e ∈ NTEvol(I),
e 6∈ NTEvol(S), and e′ ∈ NTEvol(S), we have that
I confnt S does not hold. We conclude I confa S
does not hold.

Let us suppose now that I does not pass
tests(S) for all time because there exist (e, t) ∈
TEvol(I) and (T, sT ) ∈ Test(e, tests(S)) such
that I ‖ T

e
=⇒t sT , with sT ∈ SP and t 6=

C(sT ). Since sT ∈ SP we deduce e ∈ NTEvol(S).
Besides, since t 6= C(sT ), we deduce (e, t) 6∈
TEvol(S). Finally, by taking into account that
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(e, t) ∈ TEvol(I), we conclude that IconfaS does
not hold. ⊓⊔

Regarding systems with time requirements
given by using random variables, we will show
that the derived test suite is also sound and com-
plete, up to a given confidence level α and for
a sample H , with respect to the conformance
relation conf

(α,H)
s . Specifically, the next result

states that for a given specification S, the test
suite tests(S) can be used to distinguish those
(and only those) implementations that conform

with respect to conf
(α,H)
s . However, we cannot

say that the test suite is complete since both the
notion of passing tests and the considered imple-
mentation relation have a probabilistic compo-
nent. So, we can talk of completeness up to a
certain confidence level.

Theorem 2 Let I and S be two TFSMs. For all
0 ≤ α ≤ 1 and multiset of timed executions H we
have I conf(α,H)

s S iff I (α,H)−passes tests(S).

Proof Sketch: I conf(α,H)
s S requires I confnt S

and that for all evolution belonging to both S and
I the confidence of the random variable appearing
in S on the samples observed in I is higher than α.
The way our algorithm deals with non-stochastic
information of the evolutions is independent of
the specific notion of time that we are consider-
ing. Thus, this part of the proof is the same as the
proof of Theorem 1. Regarding stochastic infor-
mation, let us remark that the samples collected
from the tests will be exactly the ones we ap-
ply to check whether the implementation relation
holds. So, the conditions we require about the
confidence of the random variables on the sam-
ples will be the same both to pass the test and to
make the implementation relation to hold. ⊓⊔

Next, we present a result to establish the appli-
cation of the test suite tests(S) for determining
whether an implementation I, for a sample H ,
conforms to the model S with respect to the re-
lations confH

int, conf
H
intf , and confH

intp given in
Definition 15.

Theorem 3 Let I and S be two TFSMs. Given a
multiset of timed executions H we have

• IconfH
intS iff I H−passes in time tests(S).

• I confH
intf S iff I H−passes fast tests(S).

• I confH
intp S iff I H−passes preferable

tests(S).

Proof Sketch: I confH
int S requires I confnt S and

that for all evolution belonging to both S and
I, the samples observed in the implementation
belong to the time interval considered in S. In
the same way that we have followed for stochastic
time, the part of the proof corresponding to non-
temporal information coincides with the proof
of Theorem 1. Regarding temporal information,
again, the samples collected from the tests are
the samples we apply to check whether the im-
plementation relation holds and the requirements
established to pass the tests are the same as the
ones demanded by the implementation relation.

⊓⊔

7. Considering non-deterministic behav-
iors

In this section we will extend the behavior
of TFSMs to allow them to present full non-
deterministic behaviors. That is, we allow a
machine to have two different transitions as
(s, s1, i, o, d1) and (s, s2, i, o, d2). This fact will in-
crement the number of implementations relations
that we introduced in Section 4.

The new relations are defined by taking into
account the fact that a non-timed evolution can
be performed in different time values depending
on the trace we consider and the time function as-
sociated with the transitions that take part of it.
It is interesting to mention that non-determinism
does not give raise to new implementation rela-
tions in the case of systems having time specified
by using random variables. This is due to the
fact that random variables will be combined by
means of an appropriate operator (e.g. the min-
imum if a race policy is used). In other words,

if we have two transitions such as s
i/o

−−−−→ ξ1 s1

and s
i/o

−−−−→ ξ2 s2, this situation is equivalent to
say that s can perform i/o by following a ran-
dom variable distributed as min(ξ1, ξ2). This is
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not the case, for example, if we have fix values:

If we have two transitions such as s
i/o

−−−−→ t1 s1

and s
i/o

−−−−→ t2 s2, we just can say that i/o is per-
formed either in time t1 or in time t2, but we can
not combine these two values. In conclusion, by
allowing non-determinism in systems where time
is expressed by means of random variables we
do not get additional implementation relations.
Thus, in this part of the work we will consider
that time is given either by means of fix values or
by time intervals.

7.1. Timed implementation relations
The confa relation (conforms always) defined

in Section 4.1 remains the same. That is, for
all timed evolution (e, t) of the implementation
we have that if e is a non-timed evolution of the
model then (e, t) is also a timed evolution of the
specification. The confb relation (conforms in
the best case) is similar to confa but consider-
ing the fastest instance. In the confw relation
(conforms in the worst case) the implementation
is forced, for each timed evolution fulfilling the
previous conditions, to be faster than the slowest
instance of the same evolution of the model. The
confsw relation requests that, for each of its evo-
lutions, at least one instance of the implementa-
tion must be faster than the slowest instance, for
the same evolution, of the model. The confsb re-
lation requests that, for each of its evolutions, at
least one instance of the implementation is faster
than the fastest instance of the model. The no-
tion of instance can be formally defined as fol-
lows: Given a machine M and a non-timed evo-
lution e ∈ NTEvol(M), for all t ∈ Time such that
(e, t) ∈ TEvol(M), we say that (e, t) is an instance
of e.

Definition 22 Let S and I be two TFSMs. We
define the following implementation relations:

• (always) I confa S iff I confnt S and for all
e ∈ NTEvol(I)∩NTEvol(S) we have that for
all time value t ∈ IR+

(e, t) ∈ TEvol(I) =⇒ (e, t) ∈ TEvol(S)

• (best) I confb S iff I confnt S and for all
e ∈ NTEvol(I) ∩ NTEvol(S) we have that

for all time value t ∈ IR+

(e, t) ∈ TEvol(I)
⇓

∀ t′ ∈ IR+ : ((e, t′) ∈ TEvol(S) =⇒ t ≤ t′)

• (worst) I confw S iff I confnt S and for all
e ∈ NTEvol(I)∩NTEvol(S) we have that for
all time value t ∈ IR+

(e, t) ∈ TEvol(I)
⇓

∃ t′ ∈ IR+ : ((e, t′) ∈ TEvol(S) ∧ t ≤ t′)

• (sometimes best) I confsb S iff I confnt S
and for all e ∈ NTEvol(I) ∩ NTEvol(S) we
have that there exists a time value t ∈ IR+

such that

(e, t) ∈ TEvol(I)
∧

∀ t′ ∈ IR+ : ((e, t′) ∈ TEvol(S) =⇒ t ≤ t′)

• (sometimes worst) I confsw S iff I confntS
and for all e ∈ NTEvol(I) ∩ NTEvol(S) we
have that there exist time values t, t′ ∈ IR+

such that

(e, t) ∈ TEvol(I)
∧

(e, t′) ∈ TEvol(S) ∧ t ≤ t′

⊓⊔

Theorem 4 The relations given in Definition 22
are related as follows:

I confb S ⇒ I confsb S
⇓ ⇓

I confa S ⇒ I confw S ⇒ I confsw S

Proof : We only need to consider the evolutions

of I belonging also to S (for the rest of evolu-
tions, the premises of the corresponding confor-
mance relation do not hold). First, let us note
that the condition about non-timed conformance
is the same in all the notions. So, we only need
to take into account the conditions on time ap-
pearing in the second clause of the corresponding
relations. If I confa S then we have that each
timed evolution in I fulfilling the conditions given
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in the definition of confa does also appear in S.
Thus, we have I confw S. If I confb S then each
timed evolution of I fulfilling the conditions given
in the definition of confb is faster than the fastest
instance of the same evolution for S. Therefore,
it is also faster than the slowest one for S, and so
I confw S.

If I confw S then we know that each instance
of a temporal evolution of I needs a time less
than or equal to the one corresponding to the
slowest instance, for the same evolution, of the
specification S. In particular, there exists an in-
stance fulfilling the condition imposed by confsw.
So, we conclude I confsw S. The same reasoning
can be also used to prove that I confb S implies
I confsb S.

Finally, we have to study the relation between
confsb and confsw. If I confsb S then we have
that for all evolution of I there exists an instance
being faster than the fastest instance of the same
evolution in S. In particular, this instance is also
faster than the slowest instance of S, so that we
conclude I confsw S. ⊓⊔

It is interesting to note that if specifications are
restricted to take always the same time for each
given evolution (independently from the possible
derivation taken for such evolution) then the re-
lations confb, confw, confsw, and confsb would
coincide, but they would be still different from
the confa relation. This is so because confa re-
quires that time values in the implementation co-
incide with those in the specification, while other
relations require that time values in the imple-
mentation are less than or equal to those of the
specification.

Lemma 5 Let I and S be TFSMs. We have the
following results:

(1) If for all non-temporal evolution
(i1/o1, . . . , ir/or) ∈ NTEvol(S) there do
not exist two different time values t, t′ ∈
IR+ such that ((i1/o1, . . . , ir/or), t) and
((i1/o1, . . . , ir/or), t

′) belong to TEvol(S),
then I confw S iff I confb S and I confsw S
iff I confsb S.

(2) If for all non-temporal evolution
(i1/o1, . . . , ir/or) ∈ NTEvol(I) there do

not exist two different time values t, t′ ∈
IR+ such that ((i1/o1, . . . , ir/or), t) and
((i1/o1, . . . , ir/or), t

′) belong to TEvol(S),
then I confw S iff I confsw S and I confb S
iff I confsb S.

(3) If the conditions of the results (1) and
(2) hold then the relations confw, confb,
confsw, and confsb coincide.

Proof : If the condition in (1) holds then the best
instance of each evolution of S is actually the
worst instance of that evolution. Similarly, if the
condition in (2) holds then the best instance of
each evolution of I is the worst one as well. The
last result is obtained from results (1) and (2) by
applying transitivity between relations. ⊓⊔

7.2. Time intervals implementation rela-
tions

In this section we present our timed implemen-
tation relations for systems where time require-
ments are expressed by means of time intervals.
We begin by giving several variations of the re-
lation presented in Definition 14, confint. In the
confint

w relation (conforms in the worst case) we
force the implementation to be faster than the
model for some of its timed evolutions. In other
words, the lower bound of the time interval of
the model is greater than the upper bound of the
one corresponding to the implementation. The
confint

b relation (conforms in the best case) is sim-
ilar, but considering all timed evolutions of the
model.

We also consider an intermediate case: prefer-
able conform relations. In this kind of relations we
have that the timed evolutions of the implementa-
tion are faster than the slowest timed evolution of
the model, but probably slower than the fastest
one. We distinguish among the different levels
by taking into account if this condition holds for
all the timed evolutions (confint

p , confint
mp, and

confint
lp ) or only for some of them (confint

smp and
confint

slp).

Definition 23 Let S and I be two TFSMs. We
define the following implementation relations:

• (best) I confint
b S iff I confnt S and for all

e ∈ NTEvol(I)∩NTEvol(S) we have that for
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all time interval t̂ ∈ IIR+

(e, t̂) ∈ TEvol(I)
⇓

∀ t̂′ ∈ IIR+ : ((e, t̂′) ∈ TEvol(S) =⇒ t̂≪ t̂′)

• (worst) I confint
w S iff I confntS and for all

e ∈ NTEvol(I)∩NTEvol(S) we have that for
all time interval t̂ ∈ IIR+

(e, t̂) ∈ TEvol(I)
⇓

∃ t̂′ ∈ IIR+ : ((e, t̂′) ∈ TEvol(S) ∧ t̂≪ t̂′)

• (sometimes best) I confint
sb S iff I confnt S

and for all e ∈ NTEvol(I) ∩ NTEvol(S) we
have that there exists a time interval t̂ ∈
IIR+ such that

(e, t̂) ∈ TEvol(I)
∧

∀ t̂′ ∈ IIR+ : ((e, t̂′) ∈ TEvol(S) =⇒ t̂≪ t̂′)

• (sometimes worst) I confint
sw S iff I confntS

and for all e ∈ NTEvol(I) ∩ NTEvol(S) we
have that there exist time intervals t̂, t̂′ ∈
IIR+ such that

(e, t̂) ∈ TEvol(I)
∧

(e, t̂′) ∈ TEvol(S) ∧ t̂≪ t̂′

• (preferable) I confint
p S iff I confnt S and

for all e ∈ NTEvol(I) ∩ NTEvol(S) we have
that for all time interval t̂ ∈ IIR+

(e, t̂) ∈ TEvol(I)
⇓

∀ t̂′ ∈ IIR+ : ((e, t̂′) ∈ TEvol(S) =⇒ t̂ ⊆ t̂′)

• (more preferable) I confint
mp S iff I confnt S

and for all e ∈ NTEvol(I) ∩ NTEvol(S) we
have that for all time interval t̂ ∈ IIR+

(e, t̂) ∈ TEvol(I)
⇓

∀ t̂′ ∈ IIR+ : (e, t̂′) ∈ TEvol(S) =⇒ t̂ � t̂′)

• (less preferable) I confint
lp S iff I confnt S

and for all e ∈ NTEvol(I) ∩ NTEvol(S) we
have that for all time interval t̂ ∈ IIR+

(e, t̂) ∈ TEvol(I)
⇓

∃ t̂′ ∈ IIR+ : ((e, t̂′) ∈ TEvol(S) ∧ t̂ � t̂′)

• (sometimes more preferable) I confint
smp S

iff I confnt S and for all e ∈ NTEvol(I) ∩
NTEvol(S) we have that there exists a time
interval t̂ ∈ IIR+ such that

(e, t̂) ∈ TEvol(I)
∧

∀ t̂′ ∈ IIR+ : ((e, t̂′) ∈ TEvol(S) =⇒ t � t′)

• (sometimes less preferable) I confint
slp S iff

I confnt S and for all e ∈ NTEvol(I) ∩
NTEvol(S) we have that there exist time in-
tervals t̂, t̂′ ∈ IIR+ such that

(e, t̂) ∈ TEvol(I)
∧

(e, t̂′) ∈ TEvol(S) ∧ t̂ � t̂′)
⊓⊔

Let us remind again that the relations on time
intervals ⊆, ≪, and � were introduced in Defini-
tion 1.

The previously defined implementation rela-
tions have the same practical drawbacks as we
commented before: In a black-box framework we
cannot see the time intervals appearing in the im-
plementation. However, these relations are inter-
esting and useful, in fact, if we would work in
a white-box framework. In such framework, we
can establish different levels of conformance, tak-
ing into account that we have information about
the time intervals that appear in the implementa-
tion. So, we can evaluate them with respect to the
ones that are established in the model. Because
of its interest in a white-box setting, and having
in mind that they are the starting point for the
forthcoming relations given in Definition 24, we
have presented here these relations and we will
study some properties.
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Theorem 5 The relations given in Defini-
tions 14 and 23 are related as follows:

I confint
b S ⇒ I confint

sb S
⇓ ⇓

I confint
w S ⇒ I confint

sw S

I confint S ⇒ I confint
p S

⇓
I confint

lp S ⇒ I confint
slp S

⇑ ⇑
I confint

mp S ⇒ I confint
smp S

Proof : We consider the evolutions of I belonging
also to S. As in the case of conformance rela-
tions for fix time values, the condition about the
non-timed conformance is the same in all the def-
initions. So we will only analyze temporal condi-
tions. If I confint

b S then each timed evolution of
I fulfilling the conditions given in the definition
of confint

b is faster than the fastest instance of the
same evolution for S. Therefore, it is also faster
than the slowest one for S. Thus, we conclude,
I confint

w S.
If I confint

w S then we know that each instance
of a temporal evolution of I needs a time less
than or equal to the one corresponding to the
slowest instance, for the same evolution, of S. In
particular, there exists an instance fulfilling the
condition imposed by confint

sw . So, we conclude
I confint

sw S. The same reasoning can be also used
to prove that I confint

b S implies I confint
sb S.

Regarding the relation between confint
sb and

confint
sw , if I confint

sb S then we have that for all
evolution of I there exists an instance being faster
than the fastest instance of the same evolution in
S. In particular, this instance is also faster than
the slowest instance of S, so that we conclude
I confint

sw S.
The reasoning for the relations confint

lp ,
confint

mp, confint
slp, and confint

smp is similar to
the one used for the relations confint

w , confint
b ,

confint
sw , and confint

sb .
Now, we have to study always and preferable

relations. First, we have that if I confint S then
each timed evolution in I fulfilling the conditions
given in the definition of confint does also appear
in S, so we have I confint

p S. Using the same

reasoning we have that if I confint S holds then
confint

lp holds too. ⊓⊔

In the next result we show how the relations
collapse if we restrict ourselves to observable ma-
chines.

Lemma 6 Let I and S be two TFSMs. We have
the following results:

(1) If for all non-temporal evolution
(i1/o1, . . . , ir/or) ∈ NTEvol(S) there do
not exist two different intervals t̂, t̂′ ∈
IIR+ such that ((i1/o1, . . . , ir/or), t̂) and
((i1/o1, . . . , ir/or), t̂′) belong to TEvol(S),
then

I confint
w S iff I confint

b S

I confint
lp S iff I confint

mp S

I confint
sw S iff I confint

sb S

I confint
slp S iff I confint

smp S

(2) If for all non-temporal evolution
(i1/o1, . . . , ir/or) ∈ NTEvol(I) there do
not exist two different intervals t̂, t̂′ ∈
IIR+ such that ((i1/o1, . . . , ir/or), t̂) and
((i1/o1, . . . , ir/or), t̂′) belong to TEvol(I),
then

I confint
w S iff I confint

sw S

I confint
lp S iff I confint

slp S

I confint
b S iff I confint

sb S

I confint
mp S iff I confint

smp S

(3) If the conditions of the results (1) and (2)
hold then the relations confint

w , confint
b ,

confint
sw , and confint

sb coincide and the
relations confint

lp , confint
mp, confint

slp, and
confint

smp coincide too.

⊓⊔

Now, we will define implementation relations in
a black box testing framework, such as we have
been considering along the paper. In this case,
we have no information about the time intervals
that appear in the implementation. As we did
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in Section 4.3, we will base our relations on a
set of observed timed executions. We will estab-
lish two levels of conformance. In the global re-
lations, for each evolution e, we will evaluate the
agreement of the interval containing the time val-
ues that have been collected in the sample (that
is, Ŝ(H,e)) with respect to the global behavior re-
quired for it in the model. This global behavior
will be defined by means of the coverage inter-
val of each evolution, in which we integrate all
possible time intervals associated with the cor-
responding timed evolutions in the model. The
second level of relations that we will establish,
sometimes relations, requires for each evolution
e represented in the sample, that there exists a
timed evolution (e, t̂) in the model such that the
time values in the sample associated to e satisfy
the appropriate conditions with respect to t̂.

Definition 24 Let I and S be two TFSMs. Let
H be a multiset of observed timed executions of
I and Φ = {e | ∃ t : (e, t) ∈ H} ∩ NTEvol(S).
Given e ∈ Φ, we define the coverage interval of e
in S as the interval Ĉov(S,e) = [t1, t2] where

t1 = min{π1(t̂) | (e, t̂) ∈ TEvol(S)}
t2 = max{π2(t̂) | (e, t̂) ∈ TEvol(S)}

We define the following implementation relations:

• I H−in time globally conforms to S, de-
noted by I confgH

int S, if I confnt S and for
all evolution e ∈ Φ we have that Ŝ(H,e) ⊆

Ĉov(S,e).

• I H−fast globally conforms to S, denoted
by I confgH

intf S, if I confnt S and for all

evolution e ∈ Φ we have that Ŝ(H,e) ≪

Ĉov(S,e).

• I H−preferable globally conforms to S, de-
noted by I confgH

intpS, if I confntS and for

all evolution e ∈ Φ we have that Ŝ(H,e) �

Ĉov(S,e).

• I H−sometimes in time conforms to S, de-
noted by I confsH

int S, if I confnt S and
for all evolution e ∈ Φ there exists (e, t̂) ∈

TEvol(S) such that Ŝ(H,e) ⊆ t̂.

• I H−sometimes fast conforms to S, de-
noted by I confsH

intf S, if I confnt S and

for all evolution e ∈ Φ there exists (e, t̂) ∈

TEvol(S) such that Ŝ(H,e) ≪ t̂.

• I H−sometimes preferable conforms to S,
denoted by I confsH

intp S, if I confnt S and
for all evolution e ∈ Φ there exists (e, t̂) ∈

TEvol(S) such that Ŝ(H,e) � t̂.
⊓⊔

7.3. Definition, application, and derivation
of tests

Next, we present the algorithm we use for de-
riving tests from a non-deterministic TFSM. This
algorithm is an extension of the one presented in
Section 6. Due to the fact that in this section
we allow TFSMs to present fully non-deterministic
behaviors, we may have several timed evolutions
corresponding to the same non-timed evolution.
So, when deriving tests, we need to include all the
possible time values for each possible evolution.

The only difference with respect to the notion
of test introduced in Definition 16 concerns the
CT function that associates time values with pass-
ing states. In this case, the range of the func-
tion will be a subset of time values (either real
numbers or time intervals) instead of a single
time value. That is, we will consider functions
CT : SP −→ P(IR+) for time requirements ex-
pressed by using fix time values and functions
CT : SP −→ P(IIR+) for time requirements ex-
pressed by time intervals.

Next, we consider the application of tests to im-
plementations by taking into account the differ-
ent time conditions. The aspect relating to pass
a test suite without consider time requirements
coincides with the one presented in Definition 17.
In the next definition we present the notion of
passing a test regarding time expressed by means
of fix time values.

Definition 25 Let I be a TFSM, T be a test, and
sT be a state of T . We say that

• I passes the test suite Tst for all time
if pass(I, Tst) and for all σ = (e, t) ∈
TEvol(I) and all (T, sT ) ∈ Test(σ, Tst), we
have that t ∈ C(sT ) holds.
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• I passes the test suite Tst in the best time
if pass(I, Tst) and for all σ = (e, t) ∈
TEvol(I), all (T, sT ) ∈ Test(σ, Tst), and all
tc ∈ C(sT ), we have that t ≤ tc holds.

• I passes the test suite Tst in the worst time
if pass(I, Tst) and for all σ = (e, t) ∈
TEvol(I) and all (T, sT ) ∈ Test(σ, Tst),
there exists tc ∈ C(sT ) such that t ≤ tc
holds.

• I passes the test suite Tst sometimes in
best time if pass(I, Tst) and there exists
σ = (e, t) ∈ TEvol(I) such that for all
(T, sT ) ∈ Test(σ, Tst) and all tc ∈ C(sT ),
we have that t ≤ tc holds.

• I passes the test suite Tst sometimes in
worst time if pass(I, Tst) and there ex-
ist σ = (e, t) ∈ TEvol(I), (T, sT ) ∈
Test(σ, Tst), and tc ∈ C(sT ) such that
t ≤ tc holds.

⊓⊔

Concerning the notions of passing test suites
when time requirements are expressed by using
time intervals, we will consider only a black box
testing framework. First, we need to adapt the
concept of coverage interval to deal with time in-
tervals appearing in tests.

Definition 26 Let us consider a test T =
(S, I,O, T r, s0, SI , SO, SF , SP , CT ). Given a
passing state sT ∈ SP , we define the coverage in-
terval for the state sT as the interval Ĉov(T,sT ) =
[t1, t2] where

t1 = min{π1(t̂) | t̂ ∈ CT (sT )}
t2 = max{π2(t̂) | t̂ ∈ CT (sT )}

Let I be a TFSM and Tst = {T1, . . . , Tn} be
a test suite. Let H1, . . . , Hn be test execution
samples of I and T1, . . . , Tn, respectively. Let
H =

⋃n
i=1Hi and Φ = {e | ∃ t : (e, t) ∈ H}.

We say that

• I H-passes in time globally the test suite
Tst if pass(I, Tst) and for all e ∈ Φ and all
T ∈ Tst such that I ‖ T

e
=⇒ sT , we have

Ŝ(H,e) ⊆ Ĉov(T,sT ).

• I H-passes fast globally the test suite Tst if
pass(I, Tst) and for all e ∈ Φ and all T ∈ Tst

such that I ‖ T
e

=⇒ sT , we have Ŝ(H,e) ≪

Ĉov(T,sT ).

• I H-passes preferable globally the test suite
Tst if pass(I, Tst) and for all e ∈ Φ and all
T ∈ Tst such that I ‖ T

e
=⇒ sT , we have

Ŝ(H,e) � Ĉov(T,sT ).

• I H-passes sometimes in time the test suite
Tst if pass(I, Tst) and for all e ∈ Φ and all
T ∈ Tst such that I ‖T

e
=⇒ sT , there exists

t̂ ∈ CT (sT ) such that Ŝ(H,e) ⊆ t̂.

• I H-passes sometimes fast the test suite Tst

if pass(I, Tst) and for all e ∈ Φ and all T ∈

Tst such that I ‖ T
e

=⇒ sT , there exists t̂ ∈
CT (sT ) such that Ŝ(H,e) ≪ t̂.

• I H-passes sometimes preferable the test
suite Tst if pass(I, Tst) and for all e ∈ Φ

and all T ∈ Tst such that I‖T
e

=⇒ sT , there
exists t̂ ∈ CT (sT ) such that Ŝ(H,e) � t̂.

⊓⊔

Next we give the extension of the algo-
rithm presented in Figure 6 to deal with non-
determinism. First, we need to adapt the notion
of after, introduced in Definition 21, to the new
setting. Essentially, after will return a set of
pairs instead of a single element. The definition
of out remains the same as in Definition 21.

Definition 27 Let M = (S, I,O, T r, sin) be a
TFSM. We define the function after : S× I×O×
Time −→ P(S×Time) such that for all s ∈ S, i ∈
I, o ∈ O, and d ∈ Time we have

after(s, i, o, d) = {(s′, d+d′)|∃ (s, s′, i, o, d′) ∈ Tr}

⊓⊔

In contrast with the definition of after for ob-
servable machines, the function after(s, i, o, d)
now returns a set of situations that can be reached
from a state s after receiving the input i, produc-
ing the output o, when the duration of the process
is given by d.
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The out and after functions can be extended
in the natural way to deal with sets:

out(Co, i) =
⋃

s∈Co
out(s, i)

after(D, i, o) =
⋃

(s,d)∈D after(s, i, o, d)

The algorithm to derive tests from a TFSM is
similar to the one presented in Section 6. Next
we show the differences with respect to that one.
The first inductive case becomes:
“If (D, sT ) ∈ Saux then perform the following
steps: Saux := Saux − {(D, sT )};SP := SP ∪
{sT}; C(sT ) := {d | (s, d) ∈ D}”
The condition in the second inductive case be-
comes:
“If Saux = {(D, sT )} and ∃ i ∈ I : out(SM , i) 6= ∅,
with SM = {s | (s, d) ∈ D}”
Finally, the third and fourth items of 2(f)
should be replaced by the assignments “D′ :=
after(D, i, o)” and “Saux := Saux ∪ {(D′, s′′)}”,
respectively.

Regarding the behavior of the algorithm, a set
of pending situations D keeps those pairs denot-
ing the possible states and duration values that
could appear in a state of the test whose defi-
nition, that is, its outgoing transitions, has not
been yet completed. A pair (D, sT ) ∈ Saux in-
dicates that we did not complete the state sT of
the test and that the possible situations for that
state are given by the set D. Let us remark that
D is a set of situations, instead of a single one,
due to the non-determinism that can appear in
the corresponding TFSM.

Example 4 Let M = (S, I,O, T r, sin) be a
TFSM. Let us suppose that we have two transi-
tions (s, s′, i, o, d1), (s, s

′′, i, o, d2) ∈ Tr. In order
to compute the evolutions of M after perform-
ing i/o we have to consider both s′ and s′′. For-
mally, for a configuration (s, x̄) and taking into
account that the time elapsed so far equals d,
we have to consider the set after({(s, d)}, i, o) =
{(s′, d1), (s

′′, d2)}. Thus, the application of this
function will return the different configurations,
as well as the total durations, that could be ob-
tained from s and duration d after receiving the
input i and generating the output o. ⊓⊔

In order to show that the test suites obtained

by applying the previous algorithm are sound and
complete with respect to the implementation rela-
tions defined in Section 7.1 and 7.2, we will follow
a reasoning similar to that in Theorems 1 and 3.
In the case of systems whose time requirements
are expressed by means of fix time values, the
main difference with respect to the proof given
in Theorem 1 is that pending situations may con-
tain a set of possibilities instead of a single one.
In addition, we have to take into account that
the adaptation to the new non-deterministic set-
ting of the algorithm presented in Figure 6 asso-
ciates a set of time values to passing states in-
stead of a single value. Thus, we only need to
change the points of the proof where we refer to
it. In this regard, the proof remains as we devel-
oped in Theorem 1, except that expressions such
as t 6= CT (sT ) must by replaced by expressions
such as t /∈ CT (sT ).

Theorem 6 Let S and I be two TFSMs. We have
that:

• I confa S iff I passes tests(S) for all time.

• I confb S iff I passes tests(S) in the best
time.

• I confwS iff I passes tests(S) in the worst
time.

• I confsb S iff I passes tests(S) in some-
times in best time.

• I confsw S iff I passes tests(S) in some-
times in worst time.

⊓⊔

Next, we present a result to establish the re-
lation between passing the test suite tests(S)
for a sample H , and the global implementation
relations (confgH

int, confgH
intf , and confgH

intp)
and the sometimes implementation relations
(confsH

int, confsH
intf , and confsH

intp) given in
Definition 24.

Theorem 7 Let I and S be two TFSMs. Given a
multiset of timed executions H we have:

• I confgH
intS iff I H−passes in time globally

tests(S).
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• I confgH
intf S iff I H−passes fast globally

tests(S).

• I confgH
intpS iff I H−passes preferable glob-

ally tests(S).

• I confsH
int S iff I H−passes sometimes in

time tests(S).

• I confsH
intf S iff I H−passes sometimes fast

tests(S).

• I confsH
intp S iff I H−passes sometimes

preferable tests(S).

Proof Sketch: IconfgH
intS requires IconfntS and

that for all evolution e belonging to the set of ob-
served timed executions, the sample interval of
e in H belongs to the coverage interval of e in
the specification. In the same way that we have
followed for fix time values, the non-temporal as-
pect of the proof coincides with the proof of The-
orem 1. Regarding temporal conditions, the sam-
ples collected from the tests applications are ex-
actly the ones we apply to check whether the
implementation relation holds. Given an evolu-
tion e appearing in the sample H , the implemen-
tation relation demands that the interval Ŝ(H,e)

is included in the coverage interval of e in S,
that is, Ĉov(S,e). Applying our algorithm, each
derived test T associates to each passing state
all the possible time intervals that the specifica-
tion may present to perform the evolution e. So,
for all test T such that T

e
=⇒ sT we have that

Ĉov(S,e) = Ĉov(T,sT ), being the requirements es-
tablished to pass the tests the same as the ones
demanded by the implementation relation. ⊓⊔

8. Related work

In this section we review some of the work most
related to ours. A longer discussion on related
work can be found in [23].

Due to the intrinsical difficulty of testing timed
systems, different approaches have been studied,
falling each of them into one or more of the fol-
lowing categories:

(a) Uncomplete testing;

(b) complete finite testing; and;

(c) complete infinite testing.

In the first category only some behaviors, out of
those that are relevant for the correctness of the
implementation, are tested (see e.g. [7,6,4,13,19]).
In these cases, methods to choose those tests
that seem to have a higher capability to find er-
rors are proposed. There are two possible ap-
proaches for doing this. On the one hand, we
may consider a given coverage criterium to build
our tests [7,6,19]. In this case, a test suite is con-
structed in such a way that its tests would fully
traverse a given structural characteristic of the
IUT (e.g., states, locations, edges, etc) if the IUT
were correct indeed. By doing this, we expect
the coverage of this characteristic in the actual
IUT to be high. On the other hand, we may re-
strict the behavior to be tested to some test pur-
poses denoting critical scenarios [13], or we may
split the specification into different test views [4]
and individually test each of them as a way to
avoid the state explosion (with the risk of miss-
ing faults that are caused by the relations between
test views).

In the (b) category, a complete finite test suite
is derived from the specification, that is, if all
tests in the finite suite are passed then the imple-
mentation is correct (see e.g. [5,28]). Usually, the
finiteness of this suite requires to introduce strong
assumptions about the implementation, both to
deal with functional requirements (e.g. to assume
that the maximal number of states in the imple-
mentation is known) and timed requirements (e.g.
urgency of outputs or discretization of time). In
general, the applicability of the derived test suite
is not feasible because the number of derived tests
is astronomic. Let us note that uncomplete meth-
ods, like those considered in the previous cate-
gory, may also seek for completeness when test-
ing a specific test purpose (i.e., they could try to
exhaustively test all behaviors concerned by the
purpose). In this case, the same kind of strong
assumptions are required.

Finally, in the (c) category a complete infinite
test suite is extracted from the specification (see
e.g. [22,27,24,3]). In particular, a test derivation
algorithm is defined in such a way that, for all
implementation behaviors that must be tested be-
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fore granting correctness, a suitable test for check-
ing this behavior is added by the algorithm. In
this sense, such an algorithm is complete (that is,
it provides full fault coverage with respect to the
considered testing relation) in the limit. The in-
terest of these methods is that, on the one hand,
weaker assumptions are required in these method-
ologies and, on the other hand, being provided
with a method to find and construct any required
test is needed if we want to select some of these
tests according to some criteria. That is, methods
that are exhaustive in the limit are the basis for
other non-exhaustive, but more practical, meth-
ods. The methodology presented in this paper
fits into this category and, consequently, its aim
is to provide test suites that are complete in the
limit while, in turn, no strong assumptions are
required (e.g. about the number of states of the
implementation).

Alternatively, we may classify timed testing
methods in terms of the underlying timed model
used to denote specifications and implementa-
tions. Several approaches use timed automata [1]
or variants where some restrictions are introduced
to make testing a feasible task (see e.g. [28,16,
4]). Other works use clock region graphs [13] or
temporal extensions of labeled transition systems
(e.g. [5,19,3]), extended finite state machines [17],
or process algebra [7,6]. In technical terms, the
selection of the underlying model depends on the
kind of system assumptions we wish to consider
(for instance, whether we need to keep time val-
ues of past transitions, using variables to affect
actual time values, linking inputs and outputs,
assuming urgency of outputs or discretization of
time, etc). Besides, some timed testing meth-
ods are timed adaptations of other previous un-
timed methods. For instance, [17] presents an
adaptation of the UIOv-method [32], algorithms
in [11,10,18] are extensions of the Wp-method [14]
to timed systems, while [19,26,3] are based on
the non-deterministic test derivation algorithm
for ioco constructed in [29,30]. This algorithm
is also the basis of the timed test derivation algo-
rithm presented in this paper.

Compared to other timed testing approaches,
this paper presents a unified framework where
deterministic time, time intervals, and stochas-

tic time are treated. Let us emphasize that time
is usually represented in deterministic terms in
temporal testing methods. Only few approaches
represent time as intervals (e.g. [7,6,5]). Regard-
ing stochastic time, to the best of our knowledge
only our previous work presented in [25], com-
mented before, provides a method to black-box
test implementations having stochastic time.

9. Concluding remarks

In this paper we have presented a formal model
to test systems where temporal requirements are
very relevant. The main contribution of this
novel framework is the integration of different
time domains in a single methodology. Specifi-
cally, we use a uniform formalism to describe sys-
tems where time requirements can be expressed
either by using fix time values, random variables,
or time intervals. This formalism is an extension
of Finite State Machines. We have defined a com-
mon conformance relation for the non-functional
requirements of the systems. This relation is
taken as the first step to define several relations
considering time constraints. These relations take
into account the special features of each time do-
main that we have studied. While implemen-
tation relations using fix time values are rela-
tively standard, if time conditions are expressed
by means of random variables or time intervals
we need to apply a method based on a set of
observations obtained from the interaction with
the implementation. In the case of random vari-
ables we applied a hypothesis contrast for deter-
mining the similarity level of the random variable
extracted from the model and the observed time
values. The criterion followed for systems where
time is expressed by means of time intervals is to
check that the observed time values in the sam-
ple belong to the time interval of the specifica-
tion. In order to ease the presentation, we ini-
tially restricted the exposition to observable ma-
chines. However, non-determinism is an impor-
tant feature while describing systems. Thus, we
have extended the timed conformance relations to
deal with systems that present non-deterministic
behaviors.

In addition to study implementation relations,
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we have introduced a common formal testing
framework. We have given a general definition of
test that includes time conditions independently
of the time domain under consideration. We have
also given an algorithm to derive a sound and
complete test suite from a given formal model
which allows us to check if an implementation ful-
fills, with respect to the model, the timed confor-
mance relations previously defined. Following the
same pattern, an algorithm for non-deterministic
behaviors has been developed considering the set
of time values that each evolution could take in its
performance. This is so because non-determinism
induces that the same evolution can be performed
by taking different time amounts.
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10. Appendix - Statistics background: Hy-
pothesis contrasts.

In this appendix we introduce one of the stan-
dard ways to measure the confidence degree that
a random variable has on a sample. In order to do
so, we will present a methodology to perform hy-
pothesis contrasts. The underlying idea is that a
sample will be rejected if the probability of observ-
ing that sample from a given random variable is
low. In practice, we will check whether the proba-
bility to observe a discrepancy lower than or equal
to the one we have observed is low enough. We
will present Pearson’s χ2 contrast. This contrast
can be applied both to continuous and discrete
random variables. The mechanism is the follow-
ing. Once we have collected a sample of size n we
perform the following steps:

• We split the sample into k classes which
cover all the possible range of values. We
denote by Oi the observed frequency at class
i (i.e. the number of elements belonging to

the class i).

• We calculate the probability pi of each class,
according to the proposed random variable.
We denote by Ei the expected frequency,
which is given by Ei = npi.

• We calculate the discrepancy between ob-
served frequencies and expected frequencies

as X2 =
∑k

i=1
(Oi−Ei)

2

Ei
. When the model

is correct, this discrepancy is approximately
distributed as a random variable χ2 .

• We estimate the number of freedom degrees
of χ2 as k − r − 1. In this case, r is the
number of parameters of the model which
have been estimated by maximal likelihood
over the sample to estimate the values of pi

(i.e. r = 0 if the model completely speci-
fies the values of pi before the samples are
observed).

• We will accept that the sample follows the
proposed random variable if the probabil-
ity to obtain a discrepancy greater or equal
to the discrepancy observed is high enough,
that is, if X2 < χ2

α(k − r − 1) for some α
high enough. Actually, as such margin to
accept the sample decreases as α increases,
we can obtain a measure of the validity of
the sample as max{α |X2 < χ2

α(k− r− 1)}.

According to the previous steps, we can now
present an operative definition of the function γ
which is used in this paper to compute the confi-
dence of a random variable on a sample.

Definition 28 Let ξ be a random variable and
J be a multiset of real numbers representing a
sample. Let X2 be the discrepancy level of J on
ξ calculated as explained above by splitting the
sampling space into k classes

C = {[0, a1), [a1, a2), . . . , [ak−2, ak−1), [ak−1,∞)}

where k is a given constant and for all 1 ≤ i ≤
k − 1 we have P (ξ ≤ ai) = i

k . We define the
confidence of ξ on J with classes C, denoted by
γ(ξ, J), as max{α |X2 < χ2

α(k − 1)}. ⊓⊔
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The previous definition indicates that in order
to perform a contrast hypothesis, we split the col-
lected values in several intervals having the same
expected probability. We compute the value for
X2 as previously described and check this fig-
ure with the tabulated tables (see, for example,
www.statsoft.com/textbook/sttable.html)
corresponding to χ2 with k − 1 freedom degrees.

Let us comment some important details. First,
given the fact that the random variables that we
use in our framework denote the passing of time,
we do not need classes to cover negative values.
Thus, we will suppose that the class containing 0
will also contain all the negative values. Second,
let us remark that in order to apply this contrast
it is strongly recommended that the sample has
at least 30 elements while each class must contain
at least 3 elements.

Example 5 Let us consider a device that pro-
duces real numbers belonging to the interval [0, 1].
We would like to test whether the device pro-
duces these numbers randomly, that is, it does
not have a number or sets of numbers that are
more probable to be produced than other ones.
Thus, we obtain a sample from the machine and
we apply the contrast hypothesis to determine
whether the machine follows a uniform distribu-
tion in the interval [0, 1]. First, we have to de-
cide how many classes we will use. Let us sup-
pose that we take k = 10 classes. Thus, for all
1 ≤ i ≤ 9 we have ai = 0.i and P (ξ ≤ ai) = i

10 .
So, C = {[0, 0.1), [0.1, 0.2) . . . [0.8, 0.9), [0.9,∞)}.

Let us suppose that the multiset of observed
values, after we sort them, is:

J =





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.00001, 0.002, 0.0876, 0.8,
0.1, 0.11, 0.123,
0.21, 0.22, 0.22, 0.2228, 0.23, 0.24, 0.28,
0.32, 0.388, 0.389, 0.391
0.4, 0.41, 0.42, 0.4333
0.543, 0.55, 0.57,
0.62, 0.643, 0.65, 0.67, 0.68, 0.689, 0.694
0.71, 0.711, 0.743, 0.756, 0.78, 0.788,
0.81, 0.811, 0.82, 0.845, 0.8999992,
0.91, 0.93, 0.94, 0.945, 0.9998

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣





Since the sample has 48 elements we have that
the expected frequency in each class, Ei, is equal

to 4.8. In contrast, the observed frequencies, Oi,
are 4, 3, 7, 4, 4, 3, 7, 6, 5, 5. Next, we have to com-
pute

X2 =

10∑

i=1

(Oi − Ei)
2

Ei
= 4.08333

Finally, we have to consider the table corre-
sponding to χ2 with 9 freedom degrees and find
the maximum α such that 4.08333 < χ2

α(9). Since
χ2

0.9(9) = 4.16816 and χ2
0.95(9) = 3.32511 we con-

clude that, with probability 0.9, the machine pro-
duces indeed random values. ⊓⊔
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