
Algebraic Theory of Probabilistic Processes ?

Manuel N�u~nez

Dept. Sistemas Inform�aticos y Programaci�on.

Universidad Complutense de Madrid, E-28040 Madrid. Spain.

Abstract

In this paper we extend de Nicola & Hennessy's testing theory to deal with prob-
abilities. We say that two processes are testing equivalent if the probabilities with
which they pass any test are equal. We present three alternative semantic views of
our testing equivalence. First, we introduce adequate extensions of acceptance sets
(inducing an operational characterization) and acceptance trees (inducing a deno-
tational semantics). We also present a sound and complete axiomatization of our
testing equivalence. So, this paper represents a complete study of the adaptation of
the classical testing theory for probabilistic processes.

Key words: Probabilistic process algebras, probabilistic testing semantics.

1 Introduction

Process algebras have been show to be an adequate mechanism to formally
describe and analyze concurrent systems (an extensive presentation of the re-
search in the �eld can be found in [4]). The process algebra literature includes
numerous semantic models. These semantics are used to describe the behavior
of processes as well as to de�ne relations on them. Testing semantics [29,19]
represents one of these semantic frameworks. Two processes are testing equiv-

alent if they have the same responses for any test. Depending on how these
responses are analyzed, several testing semantics can be de�ned: may, must,
fair, etc. In [29,19], three alternative views (operational, denotational, and
axiomatic) of the may, must, and may-must testing semantics are given.

During the last decade researchers in process algebras have tried to close the
gap between formal models and real systems. In particular, features which

? Research supported in part by the CICYT project TIC2000-0701-C02-01.
Email address: mn@sip.ucm.es (Manuel N�u~nez).

Preprint submitted to Elsevier Science 24 May 2002

were abstracted before have been now introduced. This is the case of prob-
abilistic information (see [22] for an overview on the di�erent semantics for
probabilistic processes). In particular, several probabilistic testing semantics
have been de�ned (e.g. [8,37,21,32,31,34,28,24,9,33]). See [9,22] for a compar-
ison between some of these proposals.

However, previous work on probabilistic testing semantics considered only par-
tial views of the testing framework. This paper 1 constitutes a complete study
of the classical testing theory for probabilistic processes (actually, we have
borrowed the title of the paper from [19]). First we will de�ne a testing equiv-
alence: Two processes are testing equivalent if they pass any test with the
same probability. Then, we present three di�erent views of this equivalence.
These alternative characterizations follow the classical pattern. In order to
de�ne an operational characterization we de�ne a suitable probabilistic exten-
sion of acceptance sets. We have a fully abstract denotational semantics based
on (probabilistic) acceptance trees. Finally, we present a sound and complete
axiomatization.

As we will see along the paper, the adaptation of the non-probabilistic frame-
work to deal with probabilities is far from trivial. This is related to the fact
that it will be more expressive. For instance, it is able to capture some kind of
fairness. Consider the process P = (a;Nil)�p P . In the previous process, the
operator �p denotes a pure probabilistic choice, that is, P1�pP2 behaves with
probability p as P1 and with probability 1� p as P2. If we forget probabilities,
P is must equivalent to divergence because the lack of quanti�cation could
produce that the left hand side is never taken. Nevertheless, in a probabilistic
setting we expect that if the environment o�ers a then P performs it with
probability 1, and so, P should be (probabilistic) testing equivalent to a;Nil .
In particular, this example illustrates why our axiomatization cannot be a
simple adaptation of that for non-probabilistic processes. We will need a rule
expressing that this kind of recursively de�ned processes are equivalent to a
�nite one (such as a;Nil in the previous case).

In order to keep compatibility with the language 2 used in [19], we consider a
probabilistic process algebra, that we call PPA, featuring two (probabilistic)
choice operators: external and internal. Sometimes it has been argued that
the external choice operator should not be extended with a probability. In
fact, there are some proposals including a probabilistic internal choice while
the external choice operator remains non-probabilistic. On the contrary, we
�nd it very useful to have two probabilistic choice operators. In particular, in
order to have the same expressive power as a natural probabilistic extension

1 Some parts of this paper have previously appeared in [32,30].
2 This language appears in [14]. Its principal feature is that the CCS choice operator
is replaced by two choice operators similar to those in CSP [20].

2

of CCS, 3 we need to include probabilistic information in both operators. For
example, with a non-probabilistic external choice we cannot simulate such a
simple process as P = a+p b, which relates a and b probabilistically but does
not represent a pure probabilistic choice. Intuitively, if the environment o�ers
a and b then a will be performed with probability p while b will be performed
with probability 1 � p; if the environment o�ers only a (resp. b) then a is
performed with probability 1. This last point shows the di�erence between a
probabilistic external choice and a probabilistic internal choice.

One could argue why we do not just work with a probabilistic version of
CCS. This is because by working with two choice operators we get that the
testing equivalence is in fact a congruence. As usual, working with a CCS-like
operator we need to consider the largest congruence contained in the testing
equivalence. Finally, there are some behaviors which can be speci�ed more
precisely by using a probabilistic external choice operator. We will illustrate
this by means of a simple example. Suppose we specify the behavior of a library
where two users can request books. If only one user requests a book then the
book is given to him; if both users request the same book then the library must
give priority to one of the users. Besides, the system must be somehow fair,
avoiding the possibility that if the two users request the same book, this book
is always given to the same person. A simpli�ed version of the system can be
speci�ed as P = a;P + 1

4
b;P , indicating that if both users request the same

book, it will be given with probability 1
4
to the user a and with probability 3

4
to

the user b. If only one user request the book then it is given to him/her with
probability 1. Note that if we use a probabilistic internal choice then there
is no guarantee that if only one user requests the book, it is given to him,
while if we use a non-probabilistic external choice then we cannot specify the
notion of priority. An interesting alternative to the inclusion of a probabilistic
external choice appears in [27] where this operator is considered as derived
from the probabilistic internal choice and the priority operators. Nevertheless
it is also necessary to include some kind of probability (the extremal value 1)
in the external choice operator.

We assume that the reader has some familiarity with testing theory. Although
the paper is self-contained with respect to probabilistic processes, this knowl-
edge will be useful when our model is compared with the classical testing
theory for non-probabilistic processes. The rest of the paper is organized as
follows. In Section 2 we introduce our language and our testing semantics. In
Section 3 we present an alternative characterization of our testing equivalence.
This characterization is based on a probabilistic extension of acceptance sets.
In Section 4 we present a fully abstract denotational semantics. This seman-
tics is based on a probabilistic extension of acceptance trees. In Section 5 we

3 Most probabilistic models are based either on CCS or in labeled transition systems
(which can be easily interpreted as CCS processes).

3

present a sound and complete axiomatization of our testing semantics. In Sec-
tion 6 we show how our language can be extended with a notion of parallel
composition. Besides, we discuss the diÆculties involving the introduction of
a hiding operator. Finally, in Section 7 we present our conclusions and some
lines for future work. The Appendix of the paper contains the proofs of the
main results.

2 The language PPA: Operational and Testing Semantics

In this section we present the probabilistic process algebra PPA. As we said
in the introduction of this paper, PPA is based on the language used in [19].
The main di�erence with respect to that language is that we have labeled
both choice operators (external and internal) with a probability. In this paper,
extremal values of probabilities (i.e. 0 and 1) will not be considered because, in
order to deal with priorities, a very complex extension of the model is needed
(see [10] for a presentation of di�erent priority models).

De�nition 2.1 Given a denumerable set of actions Act and a set of pro-
cess identi�ers Id, the set of PPA processes is de�ned by the following BNF-
expression: P ::= Nil j
 jX j a;P jP �p P jP +p P j recX:P , where p 2 (0; 1),
a 2 Act , and X 2 Id. ut

From now on, except if noted, we only consider closed processes (i.e. processes
without free occurrences of variables) and we usually omit trailing occurrences
of Nil . In this language Nil is a deadlocked process,
 is a divergent process, 4

a;P denotes the action a pre�xing the process P , P �pQ denotes an internal
choice between P and Q with associated probability p, P +p Q is an external
choice between P and Q with associated probability p, and �nally recX:P
is used to de�ne recursive processes. Even though both choice operators are
probabilistic, their intuitive meaning is completely di�erent. This will be more
clear once we de�ne our testing semantics.

Next we give a syntactic de�nition for the stability of a process. It expresses
that a process has not unguarded internal choices, or equivalently that a pro-
cess will not be able to (immediately) perform an internal transition. We also
de�ne a function live computing whether a stable process is operationally
equivalent to Nil .

De�nition 2.2 We de�ne the predicate stable(P) over PPA processes as:

4 Actually, such a process can be derived from the rest of the language. For example,
the process recX:X generates the same transitions as
. We keep this syntactic
expression of divergence for keeping compatibility with the classical framework.

4

(PRE)
a;P

a
�!1P

(INT1)
P�pQ>�!pP

(INT2)
P�pQ>�!1�pQ

(EXT1)
P>�!qP 0 ^ stable(Q)
P+pQ>�!qP 0+pQ

(EXT2)
Q>�!qQ0 ^ stable(P)
P+pQ>�!qP+pQ0

(EXT3)
P>�!q1P

0 ^ Q>�!q2Q
0

P+pQ>�!q1�q2P
0+pQ0

(EXT4)
P

a
�!qP 0 ^ stable(Q)

P+pQ
a
�!p�q̂P 0

(EXT5)
Q

a
�!qQ0 ^ stable(P)

P+pQ
a
�!(1�p)�q̂Q0

(REC)recX:P>�!1PfrecX:P=Xg
(DIV)

>�!1

where q̂ = q
p�live(P)+(1�p)�live(Q) .

Fig. 1. Operational Semantics of PPA.

� stable(Nil) = stable(a;P) = true

� stable(
) = stable(X) = stable(P1 �p P2) = stable(recX:P) = false

� stable(P1 +p P2) = stable(P1) ^ stable(P2)

We de�ne the function live(P) over PPA processes as:

� live(Nil) = 0 � live(a;P) = 1
� live(P1 +p P2) = max(live(P1); live(P2)) ut

Even though the function live() is not de�ned for unstable processes, this
fact does not represent a problem as we will apply it only to stable processes.
The set of rules de�ning the operational semantics is given in Figure 1. There
are two types of transitions. The intuitive meaning of an external transition
P

a
�!p Q is that if the environment o�ers all the actions in Act , then the

probability with which P performs a and then behaves as Q is equal to p. The
meaning of an internal transition P >�!p Q is that the process P evolves into
Q with probability p, without interaction with the environment. In order to
avoid the problem of deriving the same transition in di�erent ways, we use
multisets of transitions. For example, consider P = a + 1

2
a. If we were not

careful, we would have the transition P
a
�! 1

2
Nil only once, while we should

have this transition twice. This problem is similar for the �p operator. So,
in our model, if a transition can be derived in several ways, we consider that
each derivation generates a di�erent instance. In particular, when we de�ne
the testing semantics we will consider multisets of computations as well. Other
approaches to solve this problem are to index transitions (e.g. [15]), to increase
the number of rules (e.g. [25]), to de�ne a transition probability function (e.g.
[35]), or to add the probabilities associated with the same transition (e.g. [37]).

The rule for pre�x (PRE) simply indicates that the action is performed with
probability 1. The rules for internal choice (INT1 � 2) indicate that with

5

probability p the left hand side process will be chosen while the right hand
side process will be chosen with probability 1� p. The rule (DIV) says that
divergence can only evolve by performing an internal transition (with prob-
ability 1). The rule for recursion (REC) indicates that a recursive process
must be unfolded before it can perform any transitions. This is the way re-
cursion is de�ned in [19], but note that this is not the usual de�nition for
CCS. Rules (EXT1� 3) indicate that whenever any of the arguments of an
external choice can evolve via an internal transition, these transitions are per-
formed until both arguments become stable. Note that this de�nition does not
mean that the external choice operator is static. Rules (EXT4 � 5) are ap-
plied when both processes are stable and (at least) one of them may perform
some observable action. The value q̂ is obtained by normalizing the probability
q of performing this external transition where we take into account whether
one or both processes can perform external transitions. For example, consider
P = (a;Nil) +p Nil . We have P

a
�!1 Nil , while if we would not use this

normalization we would obtain P
a
�!p Nil .

As a consequence of this de�nition of operational semantics we have that
internal and external transitions are not mixed, and then we have the following
result.

Lemma 2.3 Let P be a process. If there exist p; P 0 such that P >�!p P 0

then there do not exist q; a; P 00 such that P
a
�!q P

00. Equivalently, if there
exist p; a; P 0 such that P

a
�!p P 0 then there do not exist q; P 00 such that

P >�!q P
00. ut

We can extend the relation induced by internal transitions >�!p, to a rela-
tion P >�!�

p P
0 indicating that the process P can evolve to the process P 0

after executing a sequence of internal transitions such that the product of the
probabilities associated with them is equal to p. In our de�nition, P 0 must be
unable to perform more internal transitions, that is, P 0 must be stable.

De�nition 2.4 Let P; P 0 be processes. We say that P evolves to P 0 by means
of a generalized internal transition with probability p, denoted by P >�!�

p P
0,

if either stable(P) ^ P = P 0 ^ p = 1 or there exist q1; : : : ; qn; Q1; : : :Qn�1

such that P >�!q1 Q1 >�!q2 � � �Qn�1 >�!qn P
0 ^ stable(P 0) ^ p = �qi.

ut

As for the previously introduced transitions, the new relation induces a mul-
tiset of transitions instead of just a set.

We �nish the presentation of the language by generalizing the choice operators
to deal with an arbitrary (�nite) number of arguments. For the generalized
external choice we will use a restricted form, in which all the arguments are
pre�xed by di�erent actions. These operators will be used, in particular, when
we de�ne the notion of normal form.

6

De�nition 2.5 Let P1; P2; : : : ; Pn be processes, and a1; a2; : : : ; an 2 Act pair-
wise di�erent actions. We inductively de�ne the generalized external choice as

1:
0X

i=1

[pi] ai;Pi = Nil 2:
1X

i=1

[1] a1;P1 = a1;P1

3:
nX
i=1

[pi] ai;Pi = (a1;P1) +p1 (
n�1X
i=1

[pi+11�p1
] ai+1;Pi+1)

where p1; p2; : : : ; pn > 0 are such that
P
pi = 1.

We inductively de�ne the generalized internal choice by

1:
0M

i=1

[pi] Pi =
 2:
1M

i=1

[1] P1 = P1

3:
nM
i=1

[pi] Pi =
nM
i=1

[pip] Pi �p
 [if p =
P

pi < 1 ^ n > 0]

4:
nM
i=1

[pi] Pi = P1 �p1 (
n�1M
i=1

[pi+11�p1
] Pi+1) [if

P
pi = 1 ^ n > 1]

where p1; p2; : : : ; pn > 0 are such that
P
pi � 1. ut

Regarding the de�nition of the generalized external choice operator, setting
the empty summation to Nil is consistent with the properties ful�lled by the
external choice. In particular, Nil is the identity element of +p. Let us re-
mark that the sum of the probabilities associated with a generalized internal
choice may be less than 1. The di�erence between 1 and this value indicates
the probability of divergence. The idea is that the remaining probability can
be considered as the degree of unde�nability of the process. As we will show,
the less de�ned process of the semantic domain will be associated with
. In
this case, the third clause is �rstly applied so that the sum of the probabil-
ities associated with the remaining generalized internal choice is equal to 1
(afterwards the second or the fourth clauses will be used).

Having de�ned an operational semantics for our language, we now endow it
with a testing semantics. We �rst give the notion of test. Following the classical
testing semantics, tests are just processes but extending the set of actions with
a new action ! =2 Act , indicating the successful termination of the test. We
denote by Test the set of tests. So, the operational semantics of tests is the
same as the one for processes, just considering ! as a usual action.

As in the non-probabilistic case, the interaction between a process and a test
is modelled by a parallel composition, considering as synchronization set the
full set of actions Act (note that ! does not belong to the synchronization
set). We denote by P j T the parallel composition of the process P and the
test T . The operational rules of this composition are given in Figure 2. These
rules remind the pattern of the operational semantics for the external choice

7

P >�!p P
0 ^ stable(T)

P j T >�!p P 0 j T

T >�!p T
0 ^ stable(P)

P j T >�!p P j T 0

P >�!p P
0 ^ T >�!q T

0

P j T >�!p�q P 0 j T 0

P
a
�!p P

0 ^ T
a
�!q T

0

P j T
a
�!r1 P

0 j T 0

T
!
�!p T

0 ^ stable(P)

P j T
!
�!r2 Nil

where r1 =
p�q

�(P;T)
and r2 =

p
�(P;T)

Fig. 2. Rules for the composition of processes and tests.

operator. We have two groups of rules: One of them dealing with internal
transitions, and another one dealing with observable ones. The �rst three
rules de�ne how internal transitions are performed. The fourth rule indicates
synchronization in actions belonging to Act . The �fth rule indicates execution
of the successful action ! by the test. In this last case we have that the
testing procedure (successfully) �nishes. By using this mechanism, we avoid
the derivation of useless transitions once an ! action is performed. Regarding
probabilities, we use a normalization factor. The function �(P; T) computes
the probability associated with the transitions that P j T may perform. In the
case of synchronization, we multiply the corresponding probabilities; in the
case of the ! action we simply take the probability of executing that action.
This function is formally de�ned as:

�(P; T)=
X

fj p � q j 9 P 0; T 0; a : P
a
�!p P

0^T
a
�!q T

0 jg+
X

fj p j 9 T 0 : T
!
�!p T

0 jg

The next step in de�ning our testing semantics is to introduce the notion of
computation. In particular, we distinguish successful computations, which are
those computations such that the test performs !. Because computations have
a probability associated with them, by adding the probabilities corresponding
to the successful ones we obtain the probability with which a process passes
a test.

De�nition 2.6 Let P be a process and T be a test. A computation C from
P j T is a maximal 5 sequence of transitions of the form

C = P j T 7�!p1 P1 j T1 7�!p2 � � � 7�!pn�1 Pn�1 j Tn�1 7�!pn R

where 7�!p denotes either an internal transition >�!p or a transition
�
�!q,

with � 2 Act [f!g. If the last transition of a computation is of the form
Pn�1 j Tn�1

!
�!pn Nil then we say that the computation is successful and that

the length of C is equal to n, denoted by length(S) = n. The set of successful
computations from P j T is denoted by Su(P; T).

5 By maximal we mean that the sequence is either in�nite or �nite but deadlocked.

8

The probability of a computation C, denoted by Pr(C), is inductively de�ned
as:

Pr(Nil) = Pr(�) = 1

Pr(P j T
�
7�!p C) = p � Pr(C)

where � denotes an empty sequence (i.e. the composition is deadlocked and
the testing procedure has not successfully �nished). It can be shown that Pr
is a probability distribution on computations.

We de�ne the function pass(P ; T), which computes the probability with which

the process P passes the test T , as pass(P ; T) =
X

C2Su(P;T)

Pr(C). ut

Let us remark that the role played by tests of the form a +p (� ;!) in other
models (e.g. [9]) is played in our model by tests of the form a+p !, which are
not trivially passed within our framework. For example, the process P = a
passes the test above with a probability 1 � p. The following result gives an
alternative de�nition of the probability with which a process passes a test.
By considering limits, we can restrict ourselves to �nite computations in the
following way (the proof is trivial).

Lemma 2.7 Let P be a process and T be a test. We have pass(P ; T) =
limn!1

P
fj Pr(S) j S 2 Su(P; T) ^ length(S) < n jg: ut

De�nition 2.8 Let P;Q 2 PPA. We say that P and Q are testing equivalent,
denoted by P � Q, if for any T 2 Test we have pass(P ; T) = pass(Q; T). ut

Example 2.9 Let us show some simple examples to illustrate our testing
equivalence. Consider the processes P1 = a +p b and P2 = a �p b, and the
test T1 = a;!. We have pass(P1 ; T1) = 1 6= p = pass(P2 ; T1) . This ex-
ample shows that external choice is not a simple probabilistic choice: If one
of the actions is not o�ered by the environment then the whole probability
goes to the other one. The processes P3 = (a;Q)+p (a;Q

0), P4 = a; (Q�pQ
0),

and P5 = (a;Q) �p (a;Q
0) are testing equivalent. This is similar to the sit-

uation in the classical framework where non-determinism within an external
choice can be transformed into an internal choice. Our testing semantics dis-
tinguishes between Nil (deadlock) and
 (divergence). For instance, we have
pass(Nil ; !) = 1 6= 0 = pass(
 ; !) . Consider the processes P6 = a and
P7 = recX:a�pX. As we discussed in the introduction of this paper, we have
P6 � P7. Let us remind that if we delete the probability appearing in P7 and
we consider the non-probabilistic must testing semantics we have that P7 is
equivalent to
. ut

The next result shows that recursive tests do no add discriminatory power.
Even though the proof is not diÆcult, we include it in the Appendix of this
paper because we think that it can be useful for other probabilistic models.

9

Actually, a similar result/proof has been already used in frameworks quite
di�erent to the one presented in this paper (e.g. [16,26,7,6]). Let us remark
that by �nite test we mean a test with no occurrences of recursion.

Lemma 2.10 P � Q i� pass(P ; T) = pass(Q ; T) for any �nite test T .
ut

3 Alternative Characterization: Probabilistic Acceptance Sets

In this section we present an alternative characterization of our testing seman-
tics. To this end, we will use a probabilistic extension of acceptance sets [29,19].
These sets are used in the non-probabilistic setting for giving an alternative
characterization of the must semantics. In short, acceptance sets are de�ned
as those sets of actions (called states) that are available after a sequence of
(visible) actions is performed. In the following examples we will sometimes use
the non-probabilistic counterparts of our choice operators: � and +.

Example 3.1 Consider the non-probabilistic process P = a � ((b; d) + c).
After performing the empty sequence of (visible) actions (that is, P >�!�)
we have that the only stable processes that P may reach are P >�!� a;Nil
and P >�!� (b; d) + c. 6 So, the reachable states after the empty sequence
(we usually call them immediately reachable states) are the sets of actions fag
and fb; cg. Similarly, after performing the sequence hbi we have that the only
reachable state is fdg. ut

The main changes with respect to the non-probabilistic framework are the
following:

� States are not sets of actions but sets of pairs (action, probability) (see the
forthcoming Example 3.2).

� In the non-probabilistic framework, acceptance sets are de�ned as the reach-
able states after a sequence of actions is performed (denoted by A(P; s),
where s is a sequence of actions). In the probabilistic case, sequences of ac-
tions are not enough for determining uniquely the subsequent continuations.
We have to consider sequences of (state, action) pairs (see Example 3.3).

� The notion of equivalence must be modi�ed by taking into account the
probabilistic information that appears in acceptance sets. Moreover, in con-
trast with the non-probabilistic case no notion of closure is necessary (see
forthcoming Example 3.4). 7

6 The de�nition of >�!� is similar to that of >�!�
p but omitting probabilities.

7 Even though closures (under union or convex) are not explicitly used when de�n-
ing the equivalence between acceptance sets in [19], they are hidden under the
de�nition of ��.

10

The next example illustrates the �rst of the changes.

Example 3.2 Consider the processes P = a + 1
2
b and P 0 = a + 1

3
b. Both

processes have as immediately reachable state one containing the actions a
and b. If we do not introduce probabilistic information in the states, then
both processes would be equivalent in the semantics based on acceptance sets.
However, they are not equivalent with respect to the testing semantics because,
for example, the test T = (a;!)+ 1

3
(b;Nil) distinguishes them. Therefore, the

(unique) immediately reachable state of P will be the (probabilistic) state
f(a; 1

2
); (b; 1

2
)g, while the one for P 0 will be f(a; 1

3
); (b; 2

3
)g. ut

In the non-probabilistic setting, states can be characterized just by using se-
quences of actions because the continuations of a process after an action is
performed cannot be distinguished, and thus they must be joined into a com-
mon continuation. In other words, once the process performs an action, there
is no possibility for knowing from which state this action was performed.
This is not the case, however, in the probabilistic setting. In this case, we
can distinguish via tests from which state the action was performed, so that
continuations cannot be joined.

Example 3.3 Let P be the non-probabilistic process a; d � ((a; b) + c). We
have that P is equivalent to P 0 = a; (d�b)�((a; (d�b))+c) with respect to the
equivalence induced by acceptance sets. That is, continuations after a has been
performed are joined (and so, they are repeated). But this does not happen in
the probabilistic case. Let us consider the process P = a; d� 1

2
((a; b) + 1

2
c),

and suppose that there exist R1; R2 such that P is testing equivalent to
P 0 = a;R1 � 1

2
((a;R1) + 1

2
c;R2). If we consider T = (a; b;!) + 1

3
c then on the

one hand we obtain pass(P ; T) = 1
6
, while on the other hand pass(P 0 ; T) =

1
2
� pass(R1 ; (b;!)) + 1

2
� 1
3
� pass(R1 ; (b;!)) . By assumption, P � P 0, we

should have pass(P 0 ; T) = 1
6
, which implies pass(R1 ; (b;!)) = 1

4
.

Consider now the test T 0 = a; b;!. We obtain pass(P ; T 0) = 1
2
, while we

have pass(P 0 ; T 0) = 1
2
� pass(R1 ; (b;!)) + 1

2
� pass(R1 ; (b;!)) . Assuming

P � P 0, we have pass(P 0 ; T 0) = 1
2
, and so pass(R1 ; (b;!)) = 1

2
, which is a

contradiction with the previous result. So, it is shown that there cannot exist
a unique continuation R1 ful�lling the required characteristics. ut

In general, di�erent continuations of the same action corresponding to di�erent
states can be distinguished. So we must include states in the sequences de�ning
probabilistic acceptance sets. The next example illustrates the third di�erence.

Example 3.4 Let P be the non-probabilistic process a� b. If we compute its
acceptance sets we obtain A(P; �) = ffag; fbgg; A(P; hai) = A(P; hbi) = f;g,
while for any other trace s we have A(P; s) = ;. It is easy to check that
P is equivalent to Q = (a � b) � (a + b) with respect to the equivalence

11

induced by acceptance sets. That is, the state fa; bg generated by the right
hand side of Q can be simulated by the union of the states fag and fbg
belonging to P . Consider the probabilization of P , P 0 = a�p b. Let us suppose
that there exist p1; p2; r > 0 such that P 0 is testing equivalent to the process
Q0 = (a �p1 b) �p2 (a +r b). If we consider the tests T1 = (a;!) + 1

2
(b;Nil),

and T2 = (a;!) + 1
3
(b;Nil), we get, respectively, p = p2 � p1 + (1� p2) � r and

p = p2 � p1 + (1 � p2) �
r

2�r
which implies that r should be equal either to 0

or to 1. But both values are not valid in our framework. 8 So, it has been
shown that such a process Q0, being testing equivalent to P 0, cannot exist. In
fact, P 0 will have as immediately reachable states f(a; 1)g, with probability
p, and f(b; 1)g, with probability 1 � p, while the state f(a; s); (b; 1 � s)g is
not reachable at all. On the contrary, Q0 has as immediately reachable state
f(a; r); (b; 1� r)g with a probability equal to 1� p2. ut

Once we have explained the changes with respect to the non-probabilistic
framework, we will give some previous de�nitions which are necessary for
de�ning (probabilistic) acceptance sets. First we introduce the notions of prob-
abilistic state and (immediately) reachable state. Afterwards we will de�ne a
relation P

s
=)p P

0 indicating that the process P may evolve into P 0, with a
probability equal to p, after performing the actions appearing in s through a
sequence of states which are also indicated in the sequence s.

De�nition 3.5 Let A � Act � (0; 1]. We de�ne the multiset of actions of A
as Act(A) = fj a j 9p : (a; p) 2 A jg. We say that A is a (probabilistic) state if
every action a 2 Act appears at most one time in Act(A) (i.e. Act(A) is a set),
and either

P
fj p j (a; p) 2 A jg is equal to 1, or it is equal to 0 (when A = ;).

For any probabilistic state A we de�ne the probability of the action a in A,
denoted by pro(a; A), as p if (a; p) 2 A, and as 0 otherwise. Given a stable
process P we de�ne its (immediately) reachable probabilistic state, denoted by
S(P), as the set S(P) = f(a; p) j p =

P
R fj pi j P

a
�!pi R jg ^ p > 0g.

Let A be a probabilistic state and a 2 Act . We say that the pair (A; a) is
a station if pro(a; A) > 0. In order to lighten the notation we will usually
denote stations by Aa instead of (A; a). Sequences of stations will be written
as hA1 a1; A2 a2; : : : ; An ani, and � denotes an empty sequence. Finally, s1 Æ s2
denotes the concatenation of the sequences s1 and s2. ut

Usually, when no confusion can arise, we will omit the word probabilistic when
referring to probabilistic states. Note that immediately reachable states are
de�ned only for stable processes. This is enough since the reachable states for
non-stable processes will be de�ned from the (immediately) reachable states
of the stable processes to which it can evolve after executing a generalized

8 As we indicated in the introduction of Section 2 we do not consider priorities,
that is, r is constrained by 0 < r < 1.

12

internal transition. If a process cannot be stabilized then we have a divergent
process (that is, it behaves as
). Also note that stable processes have one (and
only one) immediately reachable state. Finally, let us remark that if (A; a) is
a station then we have both A 6= ; and a 2 Act(A).

De�nition 3.6 Given the sequence of stations s = hA1 a1; A2 a2; : : : ; An ani
and 0 < p � 1, we inductively de�ne the relation P

s
=)p P

0 as:

P
�

=)p P
0 i� P >�!�

p P
0

P
s

=)p P
0 i� 9 Q1; P1; p1; q1 : P >�!�

p1 Q1
a1�!q1 P1

s0
=)p0 P

0 ^ S(Q1) = A1

^ p = p1
r1
� q1 � p

0

where s0 = hA2 a2; : : : ; An ani and r1 = pro(a1; A1). We will write P 6
s

=) if
there do not exist P 0 and p > 0 such that P

s
=)p P

0. ut

As in the previously de�ned operational relations (>�!p;
a
�!p and >�!�

p),

we must take care of the repetitions when generating
s

=)p transitions. Intu-
itively, P

s
=)p P

0 i� P can successively perform the actions ai passing through
a series of stable processes Qi such that S(Qi) = Ai, and �nally evolving into
P 0 by a generalized internal transition (that is, >�!�

q for some q). Note that P 0

must be stable. The value p is computed from the probabilities with which the
stable processes Qi are reached (by a generalized internal transition), from the
relative probabilities of executing the actions ai (i.e. the values

qi
pro(ai;Ai)

, which
denote the quotient of the probability of performing the corresponding tran-
sition among the addition of the probabilities associated with the transitions
labeled by ai), and from the probability associated with the last generalized
internal transition reaching P 0. Now we can de�ne the probabilistic acceptance
sets of a process after performing a sequence of stations.

De�nition 3.7 Let P be a process, s be a sequence of stations, and A be
a state. We say that P reaches A with probability p after performing the
sequence s, denoted by P

s
=)p A, if p =

P
P 0 fj pi jP

s
=)pi P

0 ^ S(P 0) = A jg.

Given a non-empty sequence of stations s = hA1 a1; A2 a2; : : : ; An ani, we say
that An is the last state of the sequence, denoted by last(s). Besides, we de�ne
the sequence containing all the stations but the last one, denoted by abl(s), as
hA1 a1; A2 a2; : : : ; An�1 an�1i.

Let P be a process and s be a sequence of stations. We de�ne the (probabilistic)
acceptance sets of P after s, denoted by A(P; s), as

A(P; s) =

8><>: f(A; pA) j P
s

=)pA A ^ pA > 0g if s = �

f(A; pA=qs) j P
s

=)pA A ^ pA > 0 ^ P
abl(s)
=) qs last(s)g otherwise

ut

13

Note that we have overloaded the relation
s

=)p. Nevertheless, it will be clear
from the context whether we are referring to a transition (i.e. P

s
=)p P 0)

or to the probability of reaching a state (i.e. P
s

=)p A). When no confusion
can arise, we will omit the term probabilistic. Intuitively, in order to com-
pute the acceptance sets of a process P after performing a sequence s, we
�rstly compute the states that P may reach after performing that sequence.
The probability associated with these states is computed by dividing the to-
tal probability of reaching each state (note that every state can possibly be
reached several times, by using di�erent derivations) by the probability of
reaching the last state of the sequence s (after performing the stations of this
sequence). This division is just a technicality allowing that after any sequence
s the addition of the probabilities associated with the states belonging to the
corresponding acceptance set is equal to 1 minus the probability of diverging
after the sequence. Let us remark that a (totally) divergent process cannot
reach any state, that is, A(
; s) = ; for any sequence s, because there do not
exist P and 0 < p � 1 such that

s
=)p P .

De�nition 3.8 (Alternative Characterization of �) Let P; P 0 be processes.
We write P �= P 0 if A(P; s) = A(P 0; s) for any sequence of stations s. ut

Example 3.9 Consider the process P = ((a + 1
3
b) � 1

2
(b; c)) � 1

2
(b; d). The

operational behavior of P is given by:

P >�! 1
2
P1 = (a+ 1

3
b)� 1

2
(b; c)>�! 1

2
P3 = b; c

b
�!1 P4 = c

c
�!1 Nil

>�! 1
2
P2 = a+ 1

3
b

a
�!1

3
Nil

b
�!2

3
Nil

P >�! 1
2
P5 = b; d

b
�!1 P6 = d

d
�!1 Nil

In order to compute the acceptance sets of P after a sequence of stations s we
need to compute the processes to which P can evolve after executing the se-
quence s. We compute A(P; �). We obtain P

�
=) 1

4
P2; P

�
=) 1

4
P3; P

�
=) 1

2
P5.

Also, S(P2) = A = f(a; 1
3
); (b; 2

3
)g, while S(P3) = S(P5) = B = f(b; 1)g. So,

we �nally obtain A(P; �) = f (A; 1=4); (B; 3=4) g.

Now, let us compute the values for s = hAai (note that last(s) = A and

abl(s) = �). We have P
hAai
=) 1

4
Nil and so P

hAai
=) 1

4
;. Besides, P

abl(s)
=) 1

4
A. So,

we have A(P; hAai) = f (;; 1) g. Similarly, we obtain A(P; hAbi) = f (;; 1) g.

In order to compute A(P; s), for s = hB bi, we have P
hB bi
=) 1

4
P4 and P

hB bi
=) 1

2
P6.

Given the fact that S(P4) = f(c; 1)g, S(P6) = f(d; 1)g, and taking into account

that P
abl(s)
=) 3

4
B, we obtainA(P; hB bi) = f(f(c; 1)g; 1=3); (f(d; 1)g; 2=3)g (note

that (1=4
3=4

= 1
3
and 1=2

3=4
= 2

3
). In a similar way to that used for A(P; hAai), we

14

obtain A(P; hB b; f(c; 1)g ci) = f (;; 1)g and A(P; hB b; f(d; 1)g di) = f (;; 1)g.
Finally, for any other sequence s we have A(P; s) = ;.

It can be checked that P is equivalent to P 0 = (a + 1
3
b)� 1

4
(b; (c� 1

3
d)), that

is P �= P 0. In fact, we will show later that P 0 is the normal form of P .

Consider now the process P = (a; b) � 1
3

, and the states A = f(a; 1)g and

B = f(b; 1)g. We obtain A(P; �) = f (A; 1=3) g, A(P; hAai) = f (B; 1) g,
A(P; hAa;B bi) = f (;; 1) g, and A(P; s) = ; for any other sequence s.

The following example shows how acceptance sets can be computed for re-
cursive processes. Consider the process P = recX:(a �p X) and the state
A = f(a; 1)g. The operational transitions of P are:

P >�!1a�p P >�!p a
a
�!1Nil

P >�!1a�p P >�!1�p P >�!1a�p P >�!p a
a
�!1Nil

P >�!1a�p P >�!1�p P >�!1a�p P >�!1�p P >�!1 a�p P >�!p a
a
�!1Nil

� � � � � �

Taking into account that p �
P1

i=0(1 � p)i = p � 1
1�(1�p)

= p
p

= 1, it easily

follows that A(P; �) = f(A; 1)g and A(P; hAai) = f(;; 1)g, while for any
other sequence s =2 f�; hAaig we have A(P; s) = ;. Note that P �= a;Nil . ut

In the rest of this section we will show that the relations given by De�ni-
tions 2.8 and 3.8 are equal, that is, they relate the same processes. To do so,
we �rst associate with any syntactic process its so called computation tree. In
a computation tree there is a strict alternation between internal and external

nodes. 9 If we associate generalized internal choices with internal nodes, and
generalized external choices with external nodes, we can see these trees as
generalized syntactic processes. The di�erence with respect to usual processes
comes from the fact that generalized processes may be in�nite (if they are
generated from a recursive process). We will associate with any syntactic pro-
cess an equivalent generalized process. The de�nition of these processes will
be completely operational, being based on acceptance sets.

De�nition 3.10 Let P be a process. We de�ne the normalized process asso-

ciated with P , denoted by bA(P), as bA(P) = bA(P; �), where
bA(P; s) = nM

i=1

[pi]
riX
j=1

[pi;j] ai;j ; bA(P; s Æ hAi ai;ji)

9 A similar situation appears in the alternating model [17]. However, they alternate

between probabilistic nodes (equivalent to our internal nodes) and non-deterministic
nodes (where there is no probabilistic information).

15

where A(P; s) = f(A1; p1); : : : ; (An; pn)g, Ai = f(ai;1; pi;1); : : : ; (ai;ri; pi;ri)g,
and assuming that

P0
j=1 Pi stands for the process Nil . ut

Note that 1�
P
pi indicates the probability with which the process can diverge

in each of its internal states. Because of the close relationship between bA(P)
and acceptance sets of the form A(P; s), it is reasonable to call bA(P) the
normal form of process P . Let us comment on the inductive character of the
previous de�nition. We say that the normal form of a process P is de�ned
as bA(P; �). So, we compute the �rst oor of the normal form and then we
recursively call the function by computing bA(P; hAi ai;ji), for any immediately
reachable state Ai and any ai;j 2 Ai. This recursive call will generate the
second oor of the normal form and so on.

Example 3.11 Consider the process P = ((a + 1
3
b)� 1

2
(b; c))� 1

2
(b; d) given

in Example 3.9. In order to compute bA(P) we must compute bA(P; �). The
immediately reachable states of P are A = f(a; 1

3
); (b; 2

3
)g, with probability 1

4
,

and B = f(b; 1)g, with probability 3
4
. So we have

bA(P) = bA(P; �) = ��
a; bA(P; hAai

�
+ 1

3

�
b; bA(P; hAbi

��
� 1

4

�
b; bA(P; hB bi

�
Now, we need to compute bA(P; hAai), bA(P; hAbi), and bA(P; hB bi). From
Example 3.9 we obtain A(P; hAai) = A(P; hAbi) = f (;; 1) g. So we havebA(P; hAai) = bA(P; hAbi) = Nil . From the same example we also obtain
A(P; hB bi) = C = f (f(c; 1)g; 1=3); (f(d; 1)g; 2=3) g. So,

bA(P) = bA(P; �) = �
(a;Nil) + 1

3
(b;Nil)

�
� 1

4

0BB@b;
0BB@

�
c; bA(P; hB b;C ci

�
� 1

3

�
d; bA(P; hB b;C di

�
1CCA
1CCA

Taking into account that A(P; hB b; C ci) = A(P; hB b; C di) = f (;; 1) g, we
�nish the de�nition of bA(P):bA(P) = �

(a;Nil) + 1
3
(b;Nil)

�
� 1

4

�
b;
�
(c;Nil)� 1

3
(d;Nil)

��
ut

Let us remark that the operational semantics can be extended to deal with
normalized processes. Thus, tests can be also applied to normalized processes.
In order to generate the transitions of bA(P) we apply the operational rules
given in Figure 3 to bQ = bA(P; �). The �rst rule indicates that if the proba-
bilities associated with the �rst generalized internal choice add to less than
one then we generate an internal transition to divergence. The second rule
generates internal transitions for each of the components of the generalized
internal choice. These transitions reach (normalized) processes with a unique
component. In the third rule we consider the case of a generalized internal
choice with a unique component having as associated probability a value less

16

bQ =
nM
i=1

[pi]
riX
j=1

[pi;j] ai;j ; bA(P; s Æ hAi ai;ji) ^
P

pi < 1

bQ >�!1��pi

bQ =
nM
i=1

[pi]
riX
j=1

[pi;j] ai;j ; bA(P; s Æ hAi ai;ji) ^ n > 1

bQ >�!pk

1M
i=1

[1]
rkX
j=1

[pk;j] ak;j ; bA(P; s Æ hAk ak;ji)

bQ =
nM
i=1

[pi]
riX
j=1

[pi;j] ai;j ; bA(P; s Æ hAi ai;ji) ^ n = 1 ^ p1 < 1

bQ >�!p1

1M
i=1

[1]
r1X
j=1

[p1;j] a1;j ; bA(P; s Æ hA1 a1;ji)

bQ =
nM
i=1

[pi]
riX
j=1

[pi;j] ai;j ; bA(P; s Æ hAi ai;ji) ^ n = 1 ^ p1 = 1

bQ a1;j
�!p1;j

bA(P; s Æ hA1 a1;ji)

Fig. 3. Operational Semantics for Normalized Processes.

than 1. The corresponding internal transition is generated. Finally, the fourth
rule considers the case of deterministic normalized processes. Even though
the generalized internal choice operator remains, given the fact that it is as-
sociated to a unique process we can omit the trailing >�!1 transition, and
so we consider the external transitions associated with the (unique) general-
ized external choice. These transitions reach the next oor of the normalized
process.

The next result, whose proof is trivial from the de�nition of normalized pro-
cess, states that a process and its normal form are equivalent in terms of
acceptance sets.

Lemma 3.12 For any process P we have P �= bA(P). ut

Moreover, we have de�ned normal forms in such a way that it trivially follows
their uniqueness in each equivalence class (up to commutativity).

Lemma 3.13 Let P; P 0 be processes. We have P �= P 0 i� bA(P) = bA(P 0). ut

Example 3.14 The process P 0 appearing in Example 3.9 is a normal form,
that is P 0 = bA(P 0). The process P appearing in the same example is not a
normal form, but it can be checked that bA(P) = P 0 (see Example 3.11). ut

17

The �rst step for proving that the alternative characterization based on ac-
ceptance sets is equivalent to the testing semantics consists in showing that a
process is testing equivalent to its normal form. First, we need the following
results (the proof of the �rst one is trivial while the second one can be easily
proved by induction on the length of the sequence s).

Lemma 3.15 For any process P and any sequence of stations s we have

X
P 0

fj p j P
s

=)p P
0 jg=

8><>:
P

A fj q j (A; q) 2 A(P; �) jg if s = �P
A fj q � qs j (A; q) 2 A(P; s) ^ P

abl(s)
=) qs last(s) jg if s 6= �

ut

Lemma 3.16 For any process P and any sequence of stations s we have thatP
P 0 fj p j P

s
=)p P

0 jg =
P

P 0 fj p j bA(P) s
=)p P

0 jg ut

The following result states that a process is testing equivalent to its associ-
ated normal form. It follows from the previous two results and by taking into
account that the operational behavior of a process can be encoded into the
transitions of its associated generalized process (the proof is easy but tedious).

Proposition 3.17 For any process P we have P � bA(P). ut

Now, we are going to prove that the testing equivalence and the equiva-
lence based on acceptance sets are the same. For this purpose, because of
Lemma 3.13, it will be enough to restrict ourselves to normal forms. First, we
need a uniqueness technical result (a slightly di�erent result appears in [36]).
The proof is highly technical. We include it in the Appendix because we think
that such a result (or a similar one) will be needed for any alternative charac-
terization based on acceptance sets of a testing semantics where probabilities
are considered (for instance, a similar result is used in the alternative charac-
terization of the stochastic testing semantics presented in [26]).

Lemma 3.18 Let f and f 0 be two rational functions of n � 0 variables
x1; : : : ; xn, de�ned as follows:

f =
X
i2I

ci

1 +
nX

j=1

dj;i � xj

f 0 =
X
i02I0

c0i0

1 +
nX

j=1

d0j;i0 � xj

where I; I 0 are �nite sets of indices; ci; c
0
i0 > 0; for each distinct r; s 2 I,

the tuples (d1;r; d2;r; : : : ; dn;r) and (d1;s; d2;s; : : : ; dn;s) are distinct; and for each
distinct r; s 2 I 0, the tuples (d01;r; d

0
2;r; : : : ; d

0
n;r) and (d01;s; d

0
2;s; : : : ; d

0
n;s) are

distinct. If f = f 0, then there exists a bijection h : I �! I 0 such that
dj;i = d0j;h(i) and ci = c0h(i) for all i 2 I and 1 � j � n. So, the expressions
de�ning f and f 0 are identical up to commutativity. ut

18

The next technical result will be also used in the proof of the characterization
theorem (the proof is immediate).

Lemma 3.19 Let p1 : : : pn; p
0
1 : : : p

0
n � 0 such that

P
pi =

P
p0i, and r; r0 > 0.

Then, 8 1 � i � n : pi
r
=

p0i
r0
implies 8 1 � i � n : pi = p0i ^ r = r0. ut

Finally, we present the main result of this section: Two normal forms are
testing equivalent i� they are (syntactically) equal. Because of the uniqueness
of normal forms (see Lemma 3.13) the right to left implication is trivial. The
proof of the other implication is presented in the appendix.

Theorem 3.20 Let P; P 0 be processes. bA(P) � bA(P 0) i� bA(P) = bA(P 0). ut

The result that we are looking for follows from this one: Two processes are
testing equivalent i� they are equivalent with respect to acceptance sets.

Corollary 3.21 For any processes P and P 0 we have P � P 0 i� P �= P 0.

Proof: From Proposition 3.17 we obtain P � P 0 i� bA(P) � bA(P 0). By ap-
plying Theorem 3.20 we obtain bA(P) � bA(P 0) i� bA(P) = bA(P 0). Finally, by
Lemma 3.13, we have bA(P) = bA(P 0) i� P �= P 0. ut

The proof of Theorem 3.20, in addition to prove that the relations � and �=
coincide, gives us a set of essential tests. This set has enough discriminatory
power to distinguish any pair of non-equivalent processes. We will precisely
de�ne this set of tests, which we call probabilistic barbs. Let us remark that
there exists a great similitude between our probabilistic barbs and probabilistic

traces in [9], if we consider the latter as probabilistic tests.

De�nition 3.22 The set of probabilistic barbs, denoted by PB, is de�ned by
means of the following BNF expression:

T ::=
sX

i=1

[pi] (bi;Nil) +p ! j
sX

i=1

[pi] bi;Ti where Ti =

8><>: T if i = s

Nil otherwise

where p 2 (0; 1),
P
pi = 1 , and bi 2 Act . We will write P �PB Q if for any

T 2 PB we have pass(P ; T) = pass(Q ; T) . ut

Intuitively, a probabilistic barb is either a generalized external choice whose
continuations are the test Nil composed in external choice with the action !,
or a generalized external choice whose continuations are the test Nil , but one,
whose continuation is another probabilistic barb.

Theorem 3.23 For any processes P and P 0, we have P � P 0 i� P �PB P 0.

Proof: Immediate from Theorem 3.17, which indicates that two processes
are testing equivalent i� their normal forms are, and from the proof of The-

19

orem 3.20 (see the Appendix of this paper), in which we see that in order
to distinguish two di�erent normal forms is enough to consider probabilistic
barbs. ut

4 Fully Abstract Denotational Semantics

In this section we present a fully abstract denotational semantics with respect
to the testing semantics. It is based on acceptance trees [18]. First, we will
de�ne the semantic domain and then we will de�ne semantic functions corre-
sponding to the syntactic operators of the language. Finally, we will show that
the denotational semantics relates the same process that our testing equiva-
lence. The semantic domain will be the set of probabilistic acceptance trees (in
short pat) over Act . We will denote this domain by PATAct. The elements will
be trees with two kind of nodes: internal (labeled by �) and external (labeled
by +). These trees ful�ll the following conditions:

(1) The root of the tree is an internal node.
(2) The arcs outgoing from an internal node verify the following conditions:

� They are labeled by a state (see De�nition 3.5) and a probability, being
all the states di�erent.

� The sum of the probabilities labeling these arcs must be less than or
equal to 1.

� These arcs reach external nodes.
(3) The arcs outgoing from an external node verify the following conditions:

� They are labeled by the actions belonging to the state labeling the
incoming arc.

� For any action in that state there exist a unique arc labeled by this
action.

� These arcs reach internal nodes.

We usually will denote by R;R1; : : : to the elements of PATAct. Let us re-
mark that it is possible that several outgoing arcs from an internal node are
labeled with states which have the same set of actions but with di�erent prob-
ability distributions. For example, there can exist arcs labeled by the states
f(a; 1

2
); (b; 1

2
)g and f(a; 1

3
); (b; 2

3
)g. In internal nodes, the sum of probabilities

associated with outgoing arcs can be less than one. The di�erence between
this sum and 1 denotes the probability of divergence at that point.

Some examples of probabilistic acceptance trees are given in Figure 4. As
we did for acceptance sets, we will characterize the nodes of these trees as
the reachable nodes after a sequence of pairs (state, action). In the following
de�nition we present the concepts needed to handle the reachable states of a
pat after a sequence of pairs (state, action).

20

Nil
�

+

a;

�

+

; [1]

f(a; 1)g [1]

�

a

�
�

�
�
+ +

a

�

�
�
�

@
@
@
�

+

; [1]

�

+

f(b; 1)g [1]

a b

b

�

f(a; 12); (b;
1
2)g f(a; 13); (b;

2
3)g[34][14]

b

+

f(c; 1)g [1]

c

�

�

+

f(d; 1)g [12]

d

�

recX: a;X
�

+

f(a; 1)g [1]

a

: : :

+

f(a; 1)g [1]

a

: : :

a;
� 1
2

�

+

f(a; 1)g [12]

�

a

HHHHHH

aaaaaaa

P = ((a; b;
) + 1
2
(b;Nil))� 1

4
((a; c;
) + 1

3
(b; ((d;
) � 1

2

)))

P

Fig. 4. Examples of probabilistic acceptance trees.

De�nition 4.1 Let R be a pat and A be a state. We de�ne the probability

with which R (immediately) reaches the state A, denoted by p(R;A), as pA if
there exists an outgoing arc labeled [pA] A from the root node of R; if there
does not exist such an arc then p(R;A) = 0.

Let A be a state such that pA = p(R;A) > 0 and let a 2 act(A). We de�ne
the continuation after the performance of a in A, denoted by R=(A; a), as the
tree whose root is the internal node reached by the arc labeled by a outgoing
from the external node reached by the arc labelled by [pA] A.

Let s = hA1a1; A2a2; : : : ; Anani be a sequence of stations. We de�ne the prob-
ability with which R reaches the external node associated with A after per-

forming the sequence s, denoted by p(R; s; A), as

p(R; �;A) = p(R;A)

p(R; hA1a1i Æ s;A) = p(R;A1) � p(R=(A1; a1); s; A)

ut

In Figure 5 we present a graphical representation of the previously de�ned
concepts. Let us note that a tree R can be easily rebuilt from the values
p(R; s; A). First, in order to determinate the (local) probabilities associated
with the states labeling outgoing arcs from an internal node, which is reached
after a sequence of stations, it is enough to divide by the probability of reaching
the last state of the sequence. Formally, if we denote by prob(R; s;X) to the
probability labeling the outgoing arc labeled by X from the internal node of

21

R
�
�

��
@
@@

: : :[p1] A1-�p(R;A1)
+
�
��
�
...
...
�
�

��
+
�

��
�
�

��
...

[p] A

an

[pn] An

a1

...
@
@@...

: : :
-�R=(A1; a1)

@
@@...

@
@@...

@
@@...

: : :

: : :

: : :

p(R; hA1 a1; A2 a2; : : : ; An ani; A) = p1 � p2 � � � pn � p

Fig. 5. De�nition of p(R;A), R=(A; a), and p(R; s;A).

R which is reached after the sequence s 10 , we have:

prob(R; s;X) =

8>>><>>>:
p(R;X) if s = �

p(R; s;X)
p(R; abl(s); A)

otherwise

In fact, in the rest of this section we will implicitly use this property for
de�ning some probabilistic acceptance trees. Next we de�ne the order between
probabilistic acceptance trees.

De�nition 4.2 Let R1; R2 be pat's. We write R1 vPAT R2 if for any sequence
s and state A we have p(R1; s; A) � p(R2; s; A). We write R1 =PAT R2 if
R1 vPAT R2 and R2 vPAT R1. ut

The previously de�ned relation vPAT is trivially an order. Moreover, it induces
a complete partial order. In the Appendix of this paper we show the proof of
this result.

Theorem 4.3 (PATAct;vPAT) is a complete partial order (cpo). ut

Next we de�ne semantic functions for the syntactic operators of the language.
We will show that these functions are continuous. This fact allows us to apply
�xed point techniques for de�ning the semantics of recursive processes. As
usually, we will denote by [[P]] to the semantics of the syntactic process P .

10 That is, if we have s = hA1 a1; A2 a2; : : : ; An ani then we consider the tree
R=(A1; a1)=(A2; a2) � � � =(An; an).

22

The process Nil has a unique (immediately) reachable state: The state ;,
which is reached with a probability equal to 1. So, [[Nil]] is a tree having
an internal node which has a unique arc labeled by the empty state and the
probability 1. This arc reaches an external node having no outgoing arcs. That
is, p([[Nil]]; s; A) = 1 if s = � ^ A = ;; otherwise, we have p([[Nil]]; s; A) = 0.

The process
 has no reachable states. So, [[
]] is a tree having a unique
internal node without outgoing arcs. That is, for any sequence s and state A
we have p([[
]]; s; A) = 0.

Regarding the pre�x operator, for each a 2 Act , we de�ne the semantic func-
tion a; :: PATAct �! PATAct. The acceptance tree a;R is equal to the
tree R but pre�xed with an internal node and an external node, corresponding
to the action a. That is, its root will be an internal node having a unique out-
going arc labeled by the state f(a; 1)g and the probability 1. This arc reaches
an external node having a unique outgoing arc labeled by the action a. This
arc reaches the root of R.

p(a;R; s;A) =

8>>>><>>>>:
1 if s = � ^ A = f(a; 1)g

p(R; s0; A) if s = hf(a; 1)g ai Æ s0

0 otherwise

Regarding the internal choice operator, given a value p 2 (0; 1), the function
�p :: PATAct � PATAct �! PATAct returns a tree which is the union

of the parameters, considering the probability p. A state will be reachable in
the new tree if it can be reached in any of the arguments. In this case, the
probability with which the state is reached in the �rst (resp. second) argument
is multiplied by p (resp. 1�p). The sum of these values gives us the probability
with which this state is reached in the tree R1 �p R2.

p(R1 �p R2; s; A) = p � p(R1; s; A) + (1� p) � p(R2; s; A)

Finally, for the external choice operator, given a value p 2 (0; 1) the function
+p :: PATAct � PATAct �! PATAct returns an acceptance tree repre-

senting the external union of the parameters with respect to the probability p.
Before we de�ne the semantic function +p, we will introduce an auxiliar func-
tion which joins two states according to a probability. If one of the states is
empty then the result is the other one; otherwise, the result will be a new state
whose set of actions is the union of the set of actions of the arguments. The
probability associated with these actions is computed from the probabilities
that they have in the former states and the parameter of the function.

De�nition 4.4 Let X; Y be states, and p 2 (0; 1). We de�ne the union of

23

the states X and Y with associated probability equal to p as

X [p Y =

8>>>><>>>>:
X if Y = ;

Y if X = ;

f(a; p � pro(a;X) + (1� p) � pro(a; Y))g otherwise

ut

In order to compute the result of the application of the semantic function +p,
we must consider two cases. As in the non-probabilistic case, we must distin-
guish between the root and the continuations under the root.

Root of the tree R1 +p R2

The arcs outgoing from the root of the new tree are de�ned by considering
the union of the initial states of the trees that we are composing.

p(R1 +p R2; �; A) =
X

A=B[pC

p(R1; �; B) � p(R2; �; C)

That is, there exists an outgoing arc labeled by the state A if there exist two
arcs, one outgoing from the root of R1 labeled by B, and another one from the
root of R2 labeled by C, such that A = B [p C. The probability labeling this
new arc is equal to the addition of the products of the probabilities labeling the
arcs corresponding to each pair of those states. As an immediate consequence,
we have that the function +p is strict in both arguments. So, if one of the
arguments is the tree associated with
 then the result will be [[
]]. That is,
[[P+p
]] = [[
+pP]] = [[
]], for any process P and 0 < p < 1. This is so because
there are no outgoing arcs from the root of [[
]]. Let us also remark that Nil
is an identity element of these functions: [[P +p Nil]] = [[Nil +p P]] = [[P]], for
any process P and 0 < p < 1.

Example 4.5 Let us consider the following processes: P1 = (a + 1
2
b) � 1

3
a,

P2 = b� 1
4
Nil , and P3 = b� 1

4

. We have:

8><>:p([[P1]]; �; C) = 1
3

p([[P1]]; �; A1) =
2
3

8><>:p([[P2]]; �; B1) =
1
4

p([[P2]]; �; ;) = 3
4

�
p([[P3]]; �; B1) =

1
4

where A1 = f(a; 1)g; B1 = f(b; 1)g, and C = f(a; 1
2
); (b; 1

2
)g. Additionally, we

have p([[Pi]]; �; X) = 0 for any other state X. Let us show how the roots of
some compositions, using +p, are de�ned:

24

� The root of the tree R1 = [[P1]] + 1
2
[[P2]] is given by:

p(R1; �; A1) =
2
3 �

3
4 =

1
2 (join A1 of P1 with ; of P2)

p(R1; �; f(a;
1
4); (b;

3
4)g) =

1
3 �

1
4 =

1
12 (join C of P1 with B1 of P2)

p(R1; �; C) =
1
3 �

3
4 +

2
3 �

1
4 =

5
12 (join C of P1 with ; of P2

and A1 of P1 with B1 of P2)

� The root of the tree R2 = [[P1]] + 1
3
[[P3]] is given by:

p(R2; �; f(a;
1
6); (b;

5
6)g) =

1
3 �

1
4 =

1
12 (join C of P1 with B1 of P3)

p(R2; �; f(a;
1
3); (b;

2
3)g) =

2
3 �

1
4 =

1
6 (join A1 of P1 with B1 of P3)

� The root of the tree R3 = [[P2]] + 1
2
[[P3]] is given by:

p(R3; �; B1) =
1
4 �

1
4 +

3
4 �

1
4 =

1
4 (join B1 of P2 with B1 of P3

and ; of P2 with B1 of P3)

ut

Continuations of the tree R1 +p R2

Now we have to de�ne the rest of the tree, that is, how we can obtain the
values p(R1 +p R2; s; X), for each s 6= �. First, we must compute how the
�rst state of the sequence s can be built from the initial states of R1 and
R2. Depending on which of the states (the one of R1, the one of R2, or both)
contains the �rst action of the sequence s, the continuation will be that of
R1, that of R2 or a combination of both. In the latter case, continuations will
be combined by using an internal choice in which the probability associated
with the external choice and the probabilities associated with the action in
the corresponding states of R1 and R2 take part. In conclusion, we have

p(R1 +p R2; hAai Æ s0;X) =
X

A=B[pC

p�pro(a;B)
p�pro(a;B)+(1�p)�pro(a;C) � p(R1; sB;X)�p(R2; C)

+
X

A=B[pC

(1�p)�pro(a;C)
p�pro(a;B)+(1�p)�pro(a;C) � p(R2; sC ;X)�p(R1; B)

where sB = hB ai Æ s0 and sC = hC ai Æ s0. The next example illustrates this
de�nition.

Example 4.6 Consider the processes P1 = ((a;Q1)+ 1
2
(b;Q0

1))� 1
3
(a;Q2) and

P2 = (b;Q0
2) � 1

4
Nil . In Example 4.5 we showed that the arcs outgoing from

the root of R1 = [[P1]] + 1
2
[[P2]] are labeled by the states A1 = f(a; 1)g; A2 =

f(a; 1
4
); (b; 3

4
)g, and A3 = f(a; 1

2
); (b; 1

2
)g, being the probabilities associated

25

with them 1
2
, 1
12
, and 5

12
, respectively. Let us show how the rest of the tree is

de�ned.

p(R1; hA1 ai Æ s
0;X) =

1
2
�1

1
2
�1+ 1

2
�0
� 23 � p(Q2; s

0;X) � 34 =
1
2 � p(Q2; s

0;X)

p(R1; hA2 ai Æ s
0;X) =

1
2
� 1
2

1
2
� 1
2
+ 1

2
�0
� 13 � p(Q1; s

0;X) � 14 =
1
12 � p(Q1; s

0;X)

p(R1; hA2 bi Æ s
0; X)=

1
2
� 1
2

1
2
� 1
2
+ 1

2
�1
� 13 � p(Q

0
1; s

0;X) � 14 +
1
2
�1

1
2
� 1
2
+ 1

2
�1
� 14 � p(Q

0
2; s

0;X) � 13

= 1
36 � p(Q

0
1; s

0;X) + 1
18 � p(Q

0
2; s

0;X)

p(R1; hA3 ai Æ s
0;X)=

1
2
� 1
2

1
2
� 1
2
+ 1

2
�0
� 13 � p(Q1; s

0;X) � 34 +
1
2
�1

1
2
�1+ 1

2
�0
� 23 � p(Q2; s

0; X) � 14

= 1
4 � p(Q1; s

0;X) + 1
6 � p(Q2; s

0;X)

p(R1; hA3 bi Æ s
0; X)=

1
2
� 1
2

1
2
� 1
2
+ 1

2
�0
� 13 � p(Q

0
1; s

0;X) � 34 +
1
2
�1

1
2
�0+ 1

2
�1
� 14 � p(Q

0
2; s

0;X) � 23

= 1
4 � p(Q

0
1; s

0;X) + 1
6 � p(Q

0
2; s

0;X)

Obviously, for any sequence beginning with another station we have that the
probability of reaching any state is equal to zero. ut

The next result states that the semantic operators are monotonous and con-
tinuous (the proof is given in the Appendix of the paper).

Proposition 4.7 For any a 2 Act , the function a; :: PATAct �! PATAct
is monotonous and continuous. Moreover, for any 0 < p < 1, the functions
�p ; +p :: PATAct�PATAct �! PATAct are monotonous and continuous
in both arguments. ut

As usual when de�ning a denotational semantics, the meaning of recursive
processes is obtained as the limit of its �nite approximations. They are de�ned
as P0 =
; P1 = P (
); : : : ; Pn = P n(
). Because all of the semantic operators
are continuous, this limit is the least �xed point of the equation X = P (X).
That is, we have [[recX: P (X)]] =

F1
n=0[[Pn]].

Finally, we will show that the equivalence induced by the denotational seman-
tics is equal to our testing equivalence. Instead of proving this result, we will
show that the equivalence induced by the denotational semantics relate the
same processes as the equivalence based on acceptance sets. Once we have
proven this result, by using Corollary 3.21 we will obtain that both semantics,
denotational and testing, are equivalent. We need the following result relat-
ing the operational behavior of a recursive process and the one of its �nite
approximations. The proof is easy by induction on the number of times that

26

recursion is unfolded.

Lemma 4.8 Let P = recX:P (X). Then, for any sequence s and any p 2 (0; 1]
we have P

s
=)p i� 9 n 2 IN+ : Pn

s
=)p. ut

The next result shows the close relation between acceptance sets and accep-
tance trees (the proof is given in the appendix of the paper).

Theorem 4.9 For any process P and any sequence s we have

p([[P]]; s; A) =
X
P 0

fj pi j P
s

=)pi P
0 ^ S(P 0) = A jg

ut

As an immediate corollary of the previous theorem we obtain the following
result.

Lemma 4.10 For any process P we have A(P; s) = f(A1; p1); : : : ; (An; pn)g

where pi =
p([[P]];s;Ai)

pPs
for each i, and p([[P]]; s; A) = 0 for each A distinct of

the Ai, where we consider p
P
� = 1 and pPs0ÆhB bi = p([[P]]; s0; B).

Proof: Trivial from Theorem 4.9 and De�nition 3.7. ut

Corollary 4.11 Let P;Q be processes. We have P �= Q i� [[P]] =PAT [[Q]].
ut

Corollary 4.12 (Full Abstraction for PATAct)
Let P;Q be processes. We have P � Q i� [[P]] =PAT [[Q]].

Proof: Immediate from Corollaries 3.21 and 4.11. ut

5 Axiomatization of the Testing Semantics

Even though there have appeared several axiomatizations for probabilistic
processes dealing with a notion of bisimulation (e.g. [23,15,3,1,35]), axiom-
atizations for probabilistic testing are more scarce. In addition to [30], that
we follow in this part of the paper, we may mention [12,6]. In this section
we will de�ne an axiomatization inducing an equivalence relation, denoted
by �, among the terms of our language. We will also use an order relation
v to de�ne this equivalence relation. This system includes axioms express-
ing algebraic properties of the operators as well as relations among them,
like distributivity. We will also present some axioms which are sound in the
non-probabilistic framework but not in our setting. We will �rst study the
language PPA�n which is the subset of PPA where recursive de�nitions are
not allowed. During the rest of this section we will usually call �nite processes

27

to the processes belonging to this subset of PPA. Besides, we call recursive
(or in�nite) processes to those processes containing occurrences of recursion.
Once we have studied �nite processes, we will consider the full language. So,
from the logic system for �nite processes, we will de�ne a new set of axioms
and rules dealing with recursive processes. In order to prove completeness of
the new system (taking into account that we have included in�nitary rules,
and so we cannot talk about real completeness) we will have the usual in�ni-
tary rules for recursion given in [19]. Besides, we need to add a technical rule
because the semantics of �nite processes is given by non-compact elements of
the semantic domain (we will comment more thoroughly on this rule when we
present it). Soundness of rules (axioms) dealing with � will be shown with
respect to the testing equivalence, while soundness of the ones corresponding
to v will be shown with respect to our fully abstract denotational semantics.
Although we will mix soundness (and completeness) proofs with respect to
either the testing or the denotational semantics, this process is correct. First,
we will prove [[P]] vPAT [[Q]] i� ` P v Q. From this result, given that both
vPAT and v are preorders, we will trivially get [[P]] =PAT [[Q]] i� ` P � Q.
Finally, by full abstraction, we obtain the desired result P � Q i� ` P � Q.

The �rst axioms of our system are similar to those in [19] for must testing.
They express that internal choice is idempotent, commutative and associa-
tive, while external choice is commutative and Nil is its identity element.
Commutativity and associativity are intended up to a suitable rebalance of
probabilities.

(II) P �p P � P (CI) P �p Q � Q�1�p P

(AI) P �p (Q�q R) � (P �p0 Q)�q0 R; where q
0 = p+ q � p � q and p0 = p

q0

(CE) P +p Q � Q+1�p P (NE) P +p Nil � P

Now, we present some axioms that are not sound in our probabilistic model,
although they were in non-probabilistic testing models. First, in general, the
external choice operator is not idempotent as the following example shows.

Example 5.1 Consider the processes P = a� 1
2
b and P 0 = P + 1

2
P , and the

test T = a;!. On the one hand we have pass(P ; T) = 1
2
, while on the other

hand pass(P 0 ; T) = 3
4
. ut

This situation also appears in models dealing with replication where a choice
between the same process is not necessarily equivalent to the original process.
However, the result holds for stable process (the proof is easy by consider-
ing that stable processes can evolve only by applying the operational rules
(EXT4) and (EXT5)).

Lemma 5.2 Let P be a stable process and p 2 (0; 1). Then, P � P +pP . ut

28

The following example shows that the external choice operator is not associa-
tive (even if we consider a rebalance of probabilities similar to the one that we
used in the de�nition of axiom (AI)).

Example 5.3 Consider P = a + 1
2
(b + 1

2
Nil) and P 0 = (a + 2

3
b) + 3

4
Nil , and

the test T = a;! + 1
2
b;Nil . On the one hand pass(P ; T) = 1

2
, while on the

other hand pass(P 0 ; T) = 2
3
. This is so because P � a+ 1

2
b while P 0 � a+ 2

3
b,

and obviously a+ 1
2
b 6� a + 2

3
b. ut

The lack of associativity appears if any of the corresponding processes is op-
erationally equivalent to Nil . This fact could create problems when de�ning
the notion of normal form. However we can easily solve this problem because,
by axiom (NE), we can remove all the occurrences of Nil in the context of a
external choice. We will have a restrictive associativity for the external choice,
but it will be enough for the purpose of transforming any �nite process into
normal form.

Lemma 5.4 Let P1; P2; P3 be processes such that for any i, Pi �! (i.e.
stable processes which are not operationally equivalent to Nil). We have
P1 +p (P2 +q P3) � (P1 +p0 P2) +q0 P3, where q

0 = p+ q� p � q and p0 = p
q0
. ut

The proof of the previous result is easy just by considering that stable processes
can evolve only by performing external transitions and by taking into account
that p = q0 � p0, q � (1� p) = q0 � (1� p0), and (1� p) � (1� q) = 1� q0. Next we
will introduce some axioms dealing with divergence.

(D)
 v P (DI) P �p
 v P (DE) P +p
 �

Note that, in contrast with the non-probabilistic case, we have P �p
 6�
.
For instance, consider P = a;Nil and T = a;!. We have pass(P �p
 ; T) = p
while pass(
 ; T) = 0.

Now we will consider distributive laws between the choice operators. First, the
operator +p distributes over �q.

(DEI) P1 +p (P2 �q P3) � (P1 +p P2)�q (P1 +p P3)

We can extend the previous axiom to deal with generalized internal choices:

(DEIG) P +p (
nM
i=1

[pi] Pi) �
nM
i=1

[pi] (P +p Pi)

On the contrary, the converse distributivity does not hold in general.

Example 5.5 Let P = a� 1
2
(b+ 1

2
c) and Q = (a� 1

2
b) + 1

2
(a� 1

2
c). We have

pass(P ; a;!) = 1
2
and pass(Q ; a;!) = 3

4
. ut

29

As in the non-probabilistic case, in order to prove the completeness of the logic
system we will de�ne an adequate notion of normal form. Given the fact that
our normal forms will contain generalized external choices (instead of binary
ones) we will give two axioms for composing generalized external choices.

Let A = fa1; : : : ; ang � Act and B = fb1; : : : ; bmg � Act , with A;B 6= ;. We
have

(EBE)

nX
i=1

[pi] ai;Pi

!
+p

0@ mX
j=1

[qj] bj ;Qj

1A �

lX

k=1

[rk] ck;Rk

!

where C = fc1; : : : ; clg = A [B and for any 1 � k � l we have

(Rk; rk) =

8>>>><>>>>:
(Pi ; p � pi) if ck = ai 2 A�B

(Qj ; (1� p) � qj) if ck = bj 2 B �A

(Pi � p�pi
p�pi+(1�p)�qj

Qj ; p � pi + (1� p) � qj) if ck = ai = bj 2 A \B

(IBE)

nX
i=1

[pi] ai;Pi

!
�p

nX
i=1

[pi] ai;Qi

!
�

nX
i=1

[pi] ai; (Pi �p Qi)

!

Note that the generalized generalized external choice generalizes the pre�x op-

erator because the process a1;P1 can be written as
1X

i=1

[1]ai;Pi. The next result

states that, after the adequate transformations, the binary choice operator can
be completely removed from processes, appearing instead generalized external
choices. In this case, external choices presenting non-deterministic behavior
are converted into internal choices. For instance, the process (a;P1) +p (a;P2)
will be transformed into a; (P1�pP2). The proof is easy by structural induction
and by using the axioms (NE), (DEIG), and (EBE).

Proposition 5.6 For any process P 2 PPA�n there exists P 0 2 PPA�n
such that P � P 0 and P 0 does not contain any occurrence of the binary choice
operator. ut

The following result (which proof is given in the Appendix) states that all the
axioms previously presented are sound.

Proposition 5.7 The axioms (II), (CI), (AI), (CE), (NE), (D), (DI),
(DE), (NE), (DEI), (EBE), and (IBE) are sound. ut

In addition to the previous axioms, we need a set of rules indicating that the
relation � ful�lls some good properties. The inference rules of our logic system
are given in Figure 6. Rules (O1-3) indicate that v is an order relation. Rules

30

(O1)
PvQ ^ QvP

P�Q
(O2)

P�Q
PvQ; QvP

(O3)
PvQ ^ QvR

PvR

(C1)
PvQ

a;Pva;Q
(C2)

PvQ ^ P 0vQ0

P+pP 0vQ+pQ0 (C3)
PvQ ^ P 0vQ0

P�pP 0vQ�pQ0

(RE)
P�P

(OI1)
PvQ

PvP�pQ
(OI2)

PvQ
P�pQvQ

Fig. 6. Inference Rules.

(C1-3) say that v is a precongruence with respect to the basic operators of
the language. (RE) says that � is reexive. Finally, (OI1-2) indicate that
internal choice occupies an intermediate position between the corresponding
processes. Soundness of (O1-3), (C1-3), and (RE) rules is trivial with respect
to vPAT (given the fact that the latter is compositional) while soundness of
(OI1-2) can be easily shown with respect to vPAT.

De�nition 5.8 Given two processes P and Q, we write ` P v Q (resp.
` P � Q) if P v Q (resp. P � Q) can be derived from the axioms given
before and the rules given in Figure 6. ut

Given that the previous axioms and rules are sound, we immediately get

Theorem 5.9 (Soundness for PPA�n)

For any P; Q 2 PPA�n we have ` P v Q implies [[P]] vPAT [[Q]]. As a

corollary, we also have ` P � Q implies [[P]] =PAT [[Q]], and by using full
abstraction of =PAT, ` P � Q implies P � Q. ut

The last result indicates that if we can derive the equivalence between two
�nite processes then these two processes are testing equivalent. Next, we will
prove the reciprocal result: If two �nite processes are testing equivalent then
the equivalence of these processes with respect to � can be derived from our
logic system. As usually, we will consider a notion of normal form. Once this
notion is introduced, we will have to prove that every PPA�n process can be
transformed into a normal form by applying the axioms and rules of our logic
system. Our normal forms will be very similar to the ones given in Section 4.
Speci�cally, they will be generalized internal choices of generalized external
choices. The actions associated with the generalized external choices pre�x

normal forms. So, normal forms will be again processes having a strict alter-
nation between generalized internal choices and generalized external choices.

De�nition 5.10 Normal forms are those PPA�n processes de�ned by means
of the following BNF expression:

N ::=
nM
i=1

[pi]
riX
j=1

[pi;j] ai;j ;N

31

where n � 0,
P
pi � 1, and the following restrictions hold:

� 8 1 � i � n : pi > 0^ ri � 0^ if ri > 0 then
riX
j=1

pi;j = 1^ 8 1 � j � ri : pi;j > 0

� 8 1 � i � n : 8 1 � k; l � ri; k 6= l : ai;k 6= ai;l

� 8 1 � u; v � n; u 6= v : f(au;j ; pu;j)g
ru
j=1 6= f(av;j ; pv;j)g

rv
j=1

ut

Note that, in contrast with [19], we do not force the continuations after the
same action in di�erent states to be equal. We will use the process Nil to
denote generalized external choices over the empty set of actions (i.e. ri = 0).
Moreover, we will use the pre�x notation, a;N , when the generalized external
choice has a unique action (i.e. ri = 1). For the sake of simplicity, we sometimes
will use the following alternative notation for normal forms:

N ::=
M
A2A

[pA]
X

(a;pa)2A

[pa] a;Na;A

where A is a �nite subset of P(Act � (0; 1]) such that for all A 2 A, if A 6= ;
then

P
fj pa j (a; pa) 2 A jg = 1. The next example presents some normal forms

processes as well as some processes which are not normal forms.

Example 5.11 The following processes are normal forms: a; ((b;Nil)� 1
2
Nil),

a;Nil , (a;Nil)� 1
3
(b;Nil), and (a; b;Nil)� 1

2
((a;Nil) + 1

4
(b;Nil)). On the con-

trary, the following processes are not normal forms: (a;Nil) � 2
5
(a; b;Nil),

(a;Nil) + 3
4
(a; b;Nil), and (a;Nil) + 1

6
Nil . ut

After introducing normal forms, the next step is to prove their uniqueness.
But this result is a trivial consequence of Theorem 3.20, because our normal
forms are a particular instance of the ones given by De�nition 3.10. We also
have to prove that any process can be transformed into normal form (the proof
is given in the Appendix).

Theorem 5.12 Let P 2 PPA�n . There exists a normal form N , such that
` P � N . ut

Next we present a result stating that if two (semantic) processes are related
by vPAT, then the corresponding syntactic processes are also related by v (the
proof is given in the Appendix).

Lemma 5.13 Let P;Q 2 PPA�n . Then, [[P]] vPAT [[Q]] implies P v Q. ut

By using the previous result and the equivalence between =PAT and �, we
immediately obtain

Theorem 5.14 Let P;Q 2 PPA�n . Then, P � Q implies ` P � Q. ut

32

During the rest of this section we will extend the previous results for �nite
processes to deal with the full language PPA. As we did in the denotational
treatment of recursive processes, we will work again with the approximation by
�nite processes of recursive processes. These �nite approximations are de�ned
as in [19].

De�nition 5.15 Let P be a PPA process. For any n 2 IN, we de�ne the n-th
�nite approximation of P as P 0 =
, and for n � 0:

� Xn+1 = X; if X 2 Id � Niln+1 = Nil �
n+1 =

� (a;P)n+1 = a;P n+1 � (P �p Q)
n+1 = P n+1 �p Q

n+1

� (recX:P)n+1 = P n+1f(recX:P)n=Xg � (P +p Q)
n+1 = P n+1 +p Q

n+1
ut

Note that for processes in P 2 PPA�n we have P n = P , for any n > 0. At
the syntactic level, each �nite approximation is a �nite process. In particular,
we can use our previous study for �nite processes when reasoning about �nite
approximations. In order to cope with recursive processes we �rst add the
following two rules, which are equal to those in the classical testing framework.

(R1)
PfrecX:P=Xg v recX:P

(R2)
8 n 2 IN : P n v R

P v R

Soundness proofs easily follow from the de�nition of the denotational se-
mantics of recursive processes. Speci�cally, soundness of (R1) is trivial since
[[PfrecX:P=Xg]] =

F1
n=1[[P

n]] while (R2) is sound because we are working
within a cpo, and so [[P]] is the least upper bound of f[[P i]]g1i=0. As we said in
the introduction of the paper, we need to add another rule because of technical
reasons.

(R3)
8 n 2 IN : P �n�1

n

 v R

P v R

Lemma 5.16 The rule (R3) is sound.

Proof: Let us suppose that for any n 2 IN we have [[P �n�1
n

]] vPAT [[R]]. In

other words, for any n 2 IN, any sequence s, and any state A we have that
p([[P�n�1

n

]]; s; A) � p([[R]]; s; A). From the de�nition of the internal choice se-

mantic function we obtain that for any sequence s and for any state A we have
p([[P �n�1

n

]]; s; A) = n�1

n
� p([[P]]; s; A)+ 1

n
� p([[
]]; s; A) = n�1

n
� p([[P]]; s; A). If

we consider the two previous expressions, we have that for any sequence of sta-
tions s and any state A: p([[P]]; s; A) = limn!1

n�1
n
�p([[P]]; s; A) � p([[R]]; s; A),

which implies [[P]] vPAT [[R]]. ut

We can extend the soundness result given in Theorem 5.9.

33

Theorem 5.17 Let P;Q 2 PPA. We have ` P v Q implies [[P]] vPAT [[Q]].
ut

Now we will prove completeness of the axiomatization. First, we present a
result for recursive processes (whose proof is exactly as in [19]) and then we
extend Lemma 5.13 for the case when one of the processes is not �nite.

Lemma 5.18 Let P 2 PPA. For any approximation P n we have ` P n v P .
ut

In Lemma 5.13 we showed that [[P]] vPAT [[Q]] implies P v Q for any pair of
�nite processes P and Q. Next we deal with the cases when (at least) one of
the processes contains recursive de�nitions.

Lemma 5.19 Let P 2 PPA be a non-�nite process and Q 2 PPA�n . Then,

[[P]] vPAT [[Q]] implies P v Q.

Proof: By de�nition, the �nite approximations of P form a chain, where the
value [[P]] is the least upper bound of the values [[P n]]. That is, we have that
[[P 0]] vPAT [[P 1]] vPAT � � � vPAT [[P n]] � � � vPAT [[P]] vPAT [[Q]]. Given the fact
that the processes P n and Q are �nite, we can apply Lemma 5.13 to deduce
P n v Q, for any n. Finally, by applying (R2), we have P v Q. ut

Now, let us consider the case where P is �nite but Q is not. Given that
the usual way to assign semantics to recursive processes is by means of their
�nite approximations, the most straight way for proving P v Q would be
to guarantee that there exists m such that the m-th �nite approximation of
Q ful�lls [[P]] vPAT [[Qm]]. Then, given the fact that P and Qm are �nite,
we could apply Lemma 5.13, deducing P v Qm. Besides, we have Qm v Q
and so, by applying (O3), we would obtain P v Q. If �nite processes were
mapped into compact (also called �nite) elements of the semantic domain then
the existence of such an m would be guaranteed. This is so because if R is a
compact element and R vPAT tRn then there exists Ri such that R vPAT R

i.
Unfortunately, this is not the case as the following example shows.

Example 5.20 Consider P = recX:((a;Nil)� 1
2
X), and Q = a;Nil . It is easy

to check that the �nite approximations of P are given by P n = (a;Nil)�1� 1
2n

.

By de�nition we have [[P]] = t[[P n]]. Thus, we trivially get [[P]] vPAT t[[P n]].
Besides, [[P]] describes a syntactic �nite process because [[P]] =PAT [[Q]]. So, we
should be able to conclude P � Q. By the previous lemma we have P v Q
but there does not exist m such that [[Q]] vPAT [[Pm]]. If there would exist such
an n then we get 1 = p([[Q]]; �; f(a; 1)g) � p([[Pm]]; �; f(a; 1)g) = 1� 1

2m
, which

is not possible. So, we have found a �nite (syntactic) process, a;Nil whose
semantics is the least upper bound of the in�nite nontrivial chain f[[P n]]g1n=1.

ut

34

The previous example shows that, in general, we must use another way in order
to deduce P v Q from [[P]] vPAT [[Q]]. This is the reason why the rule (R3) was
included in our logic system. This is an important di�erence with respect to
[19] where �nite processes are mapped into compact elements. Note that if we
delete probabilities, the previous example is not correct in the classical testing
theory. This is so because
 is a zero of the non-probabilistic internal choice
operator. That is, in the non-probabilistic setting all the processes P n would
be equivalent to
. Thus, a non-probabilistic version of (R3) is not sound
for non-probabilistic testing. Let us remark that the only compact element
of the semantic domain is the one corresponding to divergence. Note that
for any process P (semantically) di�erent from
 we can always construct a
succession, for instance P n = P � n

n+1

, such that P is lower than the limit

(actually [[P]] = t[[P n]]) while for any n we have [[P]] vPAT [[P n]] does not hold.
The proof of the following result (which can be found in the Appendix) shows
how to deal with this situation.

Lemma 5.21 Let P 2 PPA be a �nite process and Q 2 PPA be a recursive
one. Then, [[P]] vPAT [[Q]] implies P v Q. ut

Theorem 5.22 Let P;Q 2 PPA. Then, [[P]] vPAT [[Q]] implies P v Q.

Proof: If either P orQ is �nite then the result has been proven in the previous
lemmas. If both of them are in�nite then, by Lemma 5.21, we have P n v Q
for any �nite approximation P n of P . So, by applying rule (R2), we conclude
P v Q. ut

Corollary 5.23 Let P;Q 2 PPA. Then, [[P]] =PAT [[Q]] implies ` P � Q. ut

The proof of the following result is immediate from Corollaries 4.12 and 5.23.

Corollary 5.24 Let P;Q 2 PPA. Then, P � Q implies ` P � Q. ut

Finally, we obtain the desired result.

Corollary 5.25 Let P;Q 2 PPA. We have P � Q i� ` P � Q. ut

We �nish this section by showing an interesting alternative to the inclusion of
rule (R3). As suggested in [11], we could avoid this rule just by considering
a di�erent de�nition of the �nite approximations of a process. These new
approximations would explicitly include the information contained in that
rule. Speci�cally, the formal de�nition of the new �nite approximations would
be P 0

0 =
 and P 0
n+1 = P n � n

n+1

, where the processes P n are the old �nite

approximations given by De�nition 5.15. Using this alternative de�nition, the
information given by the rules (R2) and (R3) would be contained in the rule
(R2). In this case the rule (R3) would be redundant and so it could be omitted
in the axiomatization.

35

P >�!p P
0 ^ stable(Q)

P kp1A Q >�!p P 0 kp1A Q

Q >�!p Q
0 ^ stable(P)

P kp1A Q >�!p P kp1A Q0

P >�!p P
0 ^ Q >�!q Q

0

P kp1A Q >�!p�q P 0 kp1A Q0

P
b

�!p P
0 ^ stable(Q) ^ b =2 A

P kp1A Q
b

�!p1�r1 P
0 kp1A Q

Q
b

�!p Q
0 ^ stable(P) ^ b =2 A

P kp1A Q
b

�!(1�p1)�r1 P kp1A Q0

P
a
�!p P

0 ^Q
a
�!q Q

0 ^ a 2 A

P kp1A Q
a
�!r2 P

0 kp1A Q0

where r1 =
p

�(P;Q;A;p1)
and r2 =

p�q
�(P;Q;A;p1)

.

Fig. 7. Rules for the operator kp1A .

6 Extensions of the Language

In this section we discuss the inclusion of new operators in our language.
Speci�cally, a parallel composition operator and a hiding operator. Regarding
the parallel operator, there is no clear agreement about what is the appropriate
de�nition in a probabilistic setting (see [13] for a discussion on the topic). We
will consider a simple parallel operator with two parameters: A synchroniza-
tion set and a probability. The probability is used to assign more weight to one
of the components when performing interleaving actions. Unfortunately, the
simplicity of our operator implies that it does not ful�ll the good properties
presented in [13]: Our operator is neither respectful nor stochastic.

The operational semantics of this operator is given in Figure 7. The �rst
three rules are similar to those for the external choice: Internal transitions are
performed �rst. The next two rules consider interleaving actions. The last rule
deals with synchronization actions. Note that the last three rules are applied
only if both processes are stable. We have a normalization factor. This function
is similar to the one considered for the composition of processes and tests. It
is formally de�ned as:

�(P;Q;A; p1) =
P

a2A fj p � q j 9P
0; Q0 : P

a
�!p P

0 ^Q
a
�!q Q

0 jg

+ p1 �
P

a=2A fj p j 9P
0 : P

a
�!p P

0 jg

+(1� p1) �
P

a=2A fj p j 9Q
0 : Q

a
�!p Q

0 jg

After extending the operational semantics, we have that the de�nition of both
the testing equivalence and the alternative characterization based on accep-
tance sets may also deal with processes having occurrences of the parallel
operator. Next we de�ne the semantic function associated with the opera-
tor kpA . This allows to add this operator to the semantic treatment described
in Section 4. The function kpA :: PATAct � PATAct �! PATAct, for

36

p 2 (0; 1) and A � Act , returns an acceptance tree representing the paral-

lel composition synchronizing in A of the corresponding trees, with respect to

the probability p. We will give an auxiliary function which joins two states
according to a synchronization set and a probability. The idea is similar to
De�nition 4.4 but the de�nition is more involved.

De�nition 6.1 Let X; Y be states, A � Act and p 2 (0; 1). We de�ne the
union of the states X and Y with associated probability p and synchronization
set A as follows:

X kpA Y = f(a; pa) j a 2 (Act(X) \Act(Y) \A) [(Act(X)�A) [(Act(Y)�A)g

where the probability pa is given by

pa =

8>>>><>>>>:
p � pro(a;X) + (1 � p) � pro(a; Y)

�(X;Y;A; p)
if a =2 A

pro(a;X) � pro(a; Y)

�(X;Y;A; p)
if a 2 A

and �(X; Y;A; p) is given by:

�(X;Y;A; p) =
P

a2A fj pro(a;X) � pro(a; Y) jg

+ p �
P

a=2A fj pro(a;X) jg+ (1� p) �
P

a=2A fj pro(a; Y) jg

ut

Note the overloading of the symbols kpA , which is used both for denoting
the parallel composition of processes and the union of states, and �, which
denotes both the normalization factor for syntactic processes and the one for
normalizing the union of states. As we did for the external choice, we must
distinguish between the root of the new tree and the continuations after the
root. In order to de�ne the root of the new tree we consider the union, using
the function kpA , of the initial states of both trees.

p(R1 k
p
A R2; �;X) =

X
X=B kpA C

p(R1; �; B) � p(R2; �; C)

That is, there is an outgoing arc labelled by X from the root of the new tree
i� there exist an outgoing arc from the root of the tree R1, labelled by a
state B, and an outgoing arc from the root of the tree R2, labelled by the
state C, such that X = B kpA C. We have that this semantic function is strict
in both arguments, that is, [[P kpA
]] = [[
 kpA P]] = [[
]], for any A � Act and
0 < p < 1. If the synchronization set is empty then Nil is an identity element:
[[P kp; Nil]] = [[Nil kp; P]] = [[P]], for any 0 < p < 1.

Next we de�ne the rest of the tree, that is, how to compute p(R1 k
p
A R2; s; X)

from the trees R1 and R2. The idea is similar to the one for the external

37

(CP) P kpA Q � Q k1�pA P (DPIG) P kpA (
nM
i=1

[pi] Pi) �
nM
i=1

[pi] (P kpA Pi)

(EP) (
nX
i=1

[pi] ai;Pi) k
p
X (

mX
j=1

[qj] bj;Qj) �
lX

k=1

[rk
�(P;Q;X;p)] ck;Rk

(EPN) (
nX
i=1

[pi] ai;Pi) k
p
X Nil �

X
ak2A�X

[pk
�(P;Nil ;X;p)

] ak;Pk

(DP) P kpA
 �
 (C4) PvQ ^ P 0vQ0

P kpA P 0vQ kpA Q0

Fig. 8. Extension of the axiomatization.

choice operator. In order to de�ne continuations we use the semantic function
R=(A; a) (see De�nition 4.1). Formally,

p(R1 k
p
A R2; hB bi Æ s0;X) =

X
B=C kpA D

p(R1; �; C) � p(R2; �;D)�

8>>>>>>>>><>>>>>>>>>:

q1 � p(R1=(C; b) k
p
A R2; s

0;X)

+ q2 � p(R1 k
p
A R2=(D; b); s0;X)

if b 2 (Act(C)�A) [(Act(D)�A)

p(R1=(C; b) k
p
A R2=(D; b); s0;X) if b 2 A \Act(C) \Act(D)

0 otherwise

where q1 =
p�pro(b;C)

p�pro(b;C)+(1�p)�pro(b;D) and q2 =
(1�p)�pro(b;D)

p�pro(b;C)+(1�p)�pro(b;D) .

Now, we will show monotony and continuity of this function (the proof is
essentially as the one for external choice and we omit it). First, we need the
forthcoming Lemma 6.3 (the proof is immediate). This result indicates that
the operator =(A; a) is somehowmonotonous. Let us remark that this operator
is not monotonous in general, as the following example shows.

Example 6.2 Consider the following processes: P1 = (a; (b� 1
3

))� 1

3

 and

P2 = (a; (b� 1
4

))� 1

2

. It is easy to check that [[P1]] vPAT [[P2]]. Nevertheless,

p([[P1]]=(f(a; 1)g; a); �; f(b; 1)g) =
1
3
> p([[P2]]=(f(a; 1)g; a); �; f(b; 1)g) =

1
4
. ut

Lemma 6.3 Let R1; R2 2 PATAct (R1 vPAT R2). Then, for any state A such
that p(R1; A) > 0, any action a 2 Act(A), any sequence s, and any state X,
we have p(R1; �; A) � p(R1=(A; a); s; X) � p(R2; �; A) � p(R2=(A; a); s; X). ut

Proposition 6.4 The functions kpA :: PATAct � PATAct �! PATAct
are monotonous and continuous in both arguments, for any 0 < p < 1 and
any A � Act . ut

38

Next we will extend the axiomatization given in the previous section. As it
is the case in interleaving models of non-probabilistic processes, the parallel
operator can be considered as derived from the rest of operators. This notion
of derivation allows us to transform the application of the parallel operator on
two normal forms into a head normal form (that is, there are no occurrences
of the parallel operator in the head of the expression). So, by applying reitera-
tively these axioms, we can completely remove the parallel operator if it does
not appear within the scope of a recursion. If it appears in such a scope, its
occurrences can be sinked. Our axioms indicate that the parallel operator is
commutative and distributes over the internal choice. We have an expansion

law similar to the one appearing in non-probabilistic process algebras. We also
have an axiom indicating that the parallel operator is strict. Finally, we have
the usual congruence rule. These axioms and the rule appear in Figure 8. The
proofs of soundness for axioms (CP) and (DPIG) are easy. Axiom (EPN) is
a particular case of (EP). The proofs for (DP) and (C4) are trivial (in the
last case with respect to vPAT). Next, we formulate the expansion law (the
proof of soundness is given in the Appendix of the paper).

� Let A = fa1; : : : ; ang � Act and B = fb1; : : : ; bmg � Act . If we consider the

processes P =
nX
i=1

[pi] ai;Pi and Q =
mX
j=1

[qj] bj;Qj then we have

(EP) P kpX Q � R

where R =
lX

k=1

[rk
�(P;Q;X;p)

]ck;Rk; C = fc1; : : : ; clg = (A[B)�X [(A\B\X),

rk =

8>>>>>>><>>>>>>>:

pi � qj if ck = ai = bj 2 X

p � pi if ck = ai 2 (A�B)�X

(1� p) � qj if ck = bj 2 (B �A)�X

p � pi + (1� p) � qj if ck = ai = bj 2 (A \B)�X

Rk =

8>>>>>>>><>>>>>>>>:

Pi k
p
X Qj if ck = ai = bj 2 X

Pi k
p
X Q if ck = ai 2 (A�B)�X

P kpX Qj if ck = bj 2 (B �A)�X

(Pi k
p
X Q)� p�pi

p�pi+(1�p)�qj

(P kpX Qj) if ck = ai = bj 2 (A \B)�X

Proposition 6.5 The axiom (EP) is sound. ut

The inclusion of a hiding operator in our language is not so easy. Even though
there are proposals for such an operator in probabilistic process algebras (e.g.
[7,5,2]) we cannot reuse them in our setting. The problem is that in order

39

to include hiding as a derived operator, as we did for the parallel operator,
we should have a distributivity axiom similar to that in classical must testing:
((a; c)+b)na � c�(c+b). If we do an interpretation of hidden/internal actions
similar to that in other probabilistic models, then the probabilistic extension
of such an axiom is not sound in PPA. Consider the processes P = (a; c)+ 1

2
b,

and P 0 = Pna. Using a syntax a la CCS, we would have that P 0 should be
a process as (� ; c) + 1

2
b. We will show that there do not exist r and s, with

0 < r; s < 1, such that P 00 = c�r (c+s b) � P 0. If we compose the process P 0

and the test T1 = b;!, we should obtain pass(P 0 ; T1) = 1
2
, as it is the case

in other probabilistic testing models with internal actions (e.g. [9]). So, r = 1
2
.

Consider now the test T2 = b + 1
2
(c;!). We have pass(P 00 ; T2) = 1

2
+ 1

2
� s.

Once again, if we do an intuitive interpretation of hiding, we would have
pass(P 0 ; T2) =

2
3
, and so s = 1

3
. Finally, consider the test T3 = b+ 2

3
(c;!). On

the one hand we have pass(P 0 ; T3) = 3
4
, while on the other hand we obtain

pass(P 00 ; T3) = 3
5
. So, we deduce that the processes P 0 and P 00 cannot be

testing equivalent.

We obtain a very interesting result if we use prenormalization factors in the
previous reasoning. In few words, a prenormalization factor redistributes prob-
abilities among the available actions of both sides of the parallel (we omit the
formal de�nition). For example, using a prenormalization policy, the process

a+ 1
8
b k

1
2

fa;bg a+ 1
2
c has the transitions

a
�!1

2
and

c
�! 1

2
. In this case, the proba-

bility with which P 0 would pass the test T2 is given by pass(P 0 ; T2) =
1
2
. This

happens because c, o�ered by the test, cannot be immediately performed by
P 0. So, the probability associated with c in the test must be transferred to b in
the �rst step of the composition. So, in this �rst step the situation is similar to
consider that the test o�ers b with probability 1. But this result leads s to be
equal to 0 and, taking into account that in our model probabilities belong to
the interval (0; 1), we have that this value is not valid. We think that this last
result, apparently strange, can help to include a hiding operator in our setting.
Speci�cally, P 0 should be equivalent to P 00 = c� 1

2
(c +0 b), where +0 denotes

a (right hand side) priority operator. Intuitively, the process (c+0 b) behaves
in the following way: If the environment o�ers either b or both b and c then
b is performed with probability 1; if the environment o�ers only c then this
action is performed with probability 1. Unfortunately, our preliminary studies
showed that the inclusion of priorities extremely complicates our model. For
example, in addition to the current six rules, the operational semantics for the
parallel operator had six more rules dealing with the di�erent cases in which
both processes perform priority transitions.

Another possibility consists in including a primitive hiding operator, that is,
it cannot be derived from the rest of the operators. This solution complicates
too much the semantics of our language. In particular, normal forms would be
more complex because the hide operator must be explicitly considered.

40

7 Conclusions and Future Work

In this paper we have introduced a complete testing theory for probabilistic
processes. We have followed the presentation given in [19]. First, we have con-
sidered a language featuring two probabilistic choice operators and recursion.
We have de�ned a testing equivalence for this language and we have studied
alternative characterizations of this semantics. We have also shown how our
language can be extended with a parallel operator and we have argued that
any attempt to include a hiding operator would lead either to consider this op-
erator as primitive or to add priorities into the model. Regarding future work,
our underlying probabilistic model is similar to that of discrete time Markov
chains (if we forget actions). We are currently working on the extension of our
results to the semi-Markov processes setting. Speci�cally, [26] represents the
�rst step towards the de�nition of a complete testing theory of stochastic pro-
cesses with general distributions. Given the fact that that language combines
probabilistic choices with probability distributions (inducing delays), we are
trying to extend the results appearing in this paper to that model.

Acknowledgements. I would like to thank the referees of this paper for the
thorough reading and the useful remarks.

References

[1] S. Andova. Process algebra with probabilistic choice. In 5th AMAST Workshop

on Real-Time and Probabilistic Systems, LNCS 1601, pages 111{130. Springer,
1999.

[2] S. Andova and J.C.M. Baeten. Abstraction in probabilistic process algebra. In
TACAS 2001, LNCS 2031, pages 204{219. Springer, 2001.

[3] J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Axiomatizing probabilistic
processes: ACP with generative probabilities. Information and Computation,
121(2):234{255, 1995.

[4] J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra.
North Holland, 2001.

[5] M. Bravetti and A. Aldini. Expressing processes with di�erent action durations
through probabilities. In PAPM-PROBMIV 2001, LNCS 2165, pages 168{183.
Springer, 2001.

[6] D. Cazorla. PNAL: Un modelo algebraico para procesos probabil��sticos y no

deterministas. PhD thesis, Universidad de Castilla-La Mancha, 2001.

[7] D. Cazorla, F. Cuartero, V. Valero, and F.L. Pelayo. A process algebra for
probabilistic and nondeterministic processes. Information Processing Letters,
80:15{23, 2001.

41

[8] I. Christo�. Testing equivalences and fully abstract models for probabilistic
processes. In CONCUR'90, LNCS 458, pages 126{140. Springer, 1990.

[9] R. Cleaveland, Z. Dayar, S.A. Smolka, and S. Yuen. Testing preorders for
probabilistic processes. Information and Computation, 154(2):93{148, 1999.

[10] R. Cleaveland, G. L�uttgen, and V. Natarajan. Priority in process algebra. In
J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of process algebra,
chapter 12. North Holland, 2001.

[11] F. Cuartero. CSP probabil��stico (PCSP). Un modelo probabil��stico de procesos

concurrentes. PhD thesis, Universidad Complutense de Madrid, 1993.

[12] F. Cuartero, D. de Frutos, and V. Valero. A sound and complete proof system
for probabilistic processes. In 4th International AMAST Workshop on Real-

Time Systems, Concurrent and Distributed Software, LNCS 1231, pages 340{
352. Springer, 1997.

[13] P.R. D'Argenio, H. Hermanns, and J.-P. Katoen. On generative parallel
composition. In PROBMIV'98, Electronics Notes in Theoretical Computer

Science 22. Elsevier, 1999.

[14] R. de Nicola and M. Hennessy. CCS without � 's. In TAPSOFT'87, LNCS 249,
pages 138{152. Springer, 1987.

[15] R. van Glabbeek, S.A. Smolka, and B. Ste�en. Reactive, generative and
strati�ed models of probabilistic processes. Information and Computation,
121(1):59{80, 1995.

[16] C. Gregorio and M. N�u~nez. Denotational semantics for probabilistic refusal
testing. In PROBMIV'98, Electronics Notes in Theoretical Computer Science

22. Elsevier, 1999.

[17] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6:512{535, 1994.

[18] M. Hennessy. Acceptance trees. Journal of the ACM, 32(4):896{928, 1985.

[19] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[20] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[21] B. Jonsson and W. Yi. Compositional testing preorders for probabilistic
processes. In 10th IEEE Symposium on Logic In Computer Science, pages
431{443. IEEE-CS Press, 1995.

[22] B. Jonsson, W. Yi, and K.G. Larsen. Probabilistic extensions of process
algebras. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of

process algebra, chapter 11. North Holland, 2001.

[23] C.-C. Jou and S.A. Smolka. Equivalences, congruences and complete
axiomatizations for probabilistic processes. In CONCUR'90, LNCS 458, pages
367{383. Springer, 1990.

[24] M. Kwiatkowska and G.J. Norman. A testing equivalence for reactive
probabilistic processes. In EXPRESS'98, Electronic Notes in Theoretical

Computer Science 16. Elsevier, 1998.

[25] K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1{28, 1991.

42

[26] N. L�opez and M. N�u~nez. A testing theory for generally distributed stochastic
processes. In CONCUR 2001, LNCS 2154, pages 321{335. Springer, 2001.

[27] G. Lowe. Probabilistic and prioritized models of timed CSP. Theoretical

Computer Science, 138:315{352, 1995.

[28] K. Narayan Kumar, R. Cleaveland, and S.A. Smolka. In�nite probabilistic
and nonprobabilistic testing. In 18th Conference on Foundations of Software
Technology and Theoretical Computer Science, LNCS 1530, pages 209{220.
Springer, 1998.

[29] R. de Nicola and M.C.B. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83{133, 1984.

[30] M. N�u~nez. An axiomatization of probabilistic testing. In 5th AMAST Workshop

on Real-Time and Probabilistic Systems, LNCS 1601, pages 130{150. Springer,
1999.

[31] M. N�u~nez and D. de Frutos. Testing semantics for probabilistic LOTOS. In
Formal Description Techniques VIII, pages 365{380. Chapman & Hall, 1995.

[32] M. N�u~nez, D. de Frutos, and L. Llana. Acceptance trees for probabilistic
processes. In CONCUR'95, LNCS 962, pages 249{263. Springer, 1995.

[33] M. N�u~nez and D. Rup�erez. Fair testing through probabilistic testing. In Formal

Description Techniques for Distributed Systems and Communication Protocols

(XII), and Protocol Speci�cation, Testing, and Veri�cation (XIX), pages 135{
150. Kluwer Academic Publishers, 1999.

[34] R. Segala. Testing probabilistic automata. In CONCUR'96, LNCS 1119, pages
299{314. Springer, 1996.

[35] E.W. Stark and S.A. Smolka. A complete axiom system for �nite-state
probabilistic processes. In Proof, Language and Interaction: Essays in Honour

of Robin Milner. MIT Press, 2000.

[36] S.-H. Wu, S.A. Smolka, and E.W. Stark. Composition and behaviors of
probabilistic I/O automata. Theoretical Computer Science, 176(1-2):1{37, 1997.

[37] W. Yi and K.G. Larsen. Testing probabilistic and nondeterministic processes.
In Protocol Speci�cation, Testing and Veri�cation XII, pages 47{61. North
Holland, 1992.

Appendix: Proofs of the Main Results

Lemma 2.10 P � Q i� for all �nite test T we have pass(P ; T) = pass(Q; T).

Proof: The left to right implication is obvious. The proof of the right to left
implication is done by contradiction. We suppose that P and Q pass any �nite
test with the same probability, but that there exists a recursive test T such
that p = pass(P ; T) , q = pass(Q ; T) , and p 6= q. So,

p = lim
n!1

X
S2Su(P;T)

fPr(S) jlength(S) < ng 6= lim
n!1

X
S2Su(Q;T)

fPr(S) jlength(S) < ng =q

43

Let actions(S) be equal to the number of transitions appearing in S labeled
by an action belonging to the set Act [f!g. If we have the previous inequality
it is obvious that we also have

p = lim
n!1

X
S2Su(P;T)

fPr(S) j actions(S) < ng 6= lim
n!1

X
S2Su(Q;T)

fPr(S) j actions(S) < ng =q

If these two limits are di�erent, then there exist n0 such that for all n � n0
we haveX

S2Su(P;T)

fPr(S) j actions(S) < ng 6=
X

S2Su(Q;T)

fPr(S) j actions(S) < ng

Let us consider the �nite test T 0 resulting from T by unwinding n0 times every
occurrence of recursion in T , and then replacing any occurrence of recursion
by Nil . We have that T 0 can perform the same sequences of transitions S such
that actions(S) � n0 as T .

11 So, P j T 0 (resp. Q j T 0) can perform the same
computations as P j T such that actions(S) � n0 (resp. Q j T), and so we
get, by the last inequality, that the probabilities with which P and Q pass T 0

are di�erent (note that T 0 is �nite).

Lemma 3.18 Let f and f 0 be two rational functions of n � 0 variables
x1; x2 : : : xn, de�ned as follows:

f =
X
i2I

ci

1 +
nX

j=1

dj;i � xj

f 0 =
X
i02I0

c0i0

1 +
nX

j=1

d0j;i0 � xj

where I; I 0 are �nite sets of indices; ci; c
0
i0 > 0; for each distinct r; s 2 I,

the tuples (d1;r; d2;r; : : : ; dn;r) and (d1;s; d2;s; : : : ; dn;s) are distinct; and for each
distinct r; s 2 I 0, the tuples (d01;r; d

0
2;r; : : : ; d

0
n;r) and (d01;s; d

0
2;s; : : : ; d

0
n;s) are

distinct. If f = f 0, then there exists a bijection h : I �! I 0 such that
dj;i = d0j;h(i) and ci = c0h(i) for all i 2 I and 1 � j � n. So, the expressions
de�ning f and f 0 are identical up to commutativity.

Proof: By now, let us assume that there does not exist a null tuple in the
de�nition of f , that is, 8i 2 I 9j 2 f1 : : : ng : dj;i 6= 0.

Let pi = 1 +
nX

j=1

dj;i � xj, p
0
i0 = 1 +

nX
j=1

d0j;i0 � xj, and let P =
Y
i2I

pi �
Y
i02I0

p0i0. We

11 Sequences corresponding to T may have additional internal transitions corre-
sponding to unwinding recursions. However, these transitions have probability 1.

44

have, f � P = f 0 � P , that is:X
i2I

ci �
Y
k2I

k 6=i

pk �
Y
k02I0

p0k0 =
X
i02I0

c0i0 �
Y
k2I

pk �
Y
k02I0

k0 6=i0

p0k0

For each i 2 I, let �Ei � IRn be the set of roots of the polynomial pi. Then, for
any �ei 2 �Ei we have

(f � P)(�ei) = ci �

Ri(�ei)z }| {Y
k2I

k 6=i

pk(�ei) �
Y
k02I0

p0k0(�ei) == (f 0 � P)(�ei) = 0

We are assuming ci > 0, for any i 2 I. So, for each �ei 2 �Ei we have that
Ri(�ei) =

Y
k2I

k 6=i

pk �
Y
k02I0

p0k0 = 0.

Geometrically speaking, the sets �Ei represent the points of an hyperplane in
IRn. Besides, the expression Ri(�ei) = 0 represents, for each i, the union of the
hyperplanes corresponding to each k0 2 I 0 and to each k 2 I such that k 6= i.
Note that this union is �nite. So, if Ri(x) = 0 holds for all the points belonging
to a hyperplane (in this case Ei, or equivalently the roots of the polynomial
pi) then we have two possibilities: Either there exists k 2 I (with k 6= i) such
that the hyperplane associated with pk is �Ei, or there exists k

0 2 I 0 such that
the hyperplane associated with p0k0 is �Ei. However, if two polynomials de�ne
the same hyperplane, then their coeÆcients must be proportional. Given the
fact that all of the involved polynomials has as independent term the value 1,
this proportionality coeÆcient must be equal to 1. In this situation, the �rst
possibility is not possible, because the hypothesis of the lemma says that all
the tuples appearing in f are pairwise di�erent. So, there must exist k0 2 I 0

such that pi = p0k0. Iterating the same reasoning for every i 2 I, we obtain a
function h : I �! I 0 such that dj;i = d0j;h(i) for every i 2 I and 1 � j � n.
Because all of the tuples appearing in f and f 0 are pairwise di�erent, we
trivially have that h is injective. For the sake of simplicity, reordering the
indices of I 0, we can assume that h(i) = i. This allows to decompose I 0 as
I 0 = I [J where I \ J = ;, such that we obtain

f =
X
i2I

ci
pi

f 0 =
X
i2I

c0i
pi

+
X
j2J

c0j
p0j

where by the hypothesis of the lemma, the polynomials p0j (for j 2 J) are

di�erent from pi. We still have to prove that J = ;. Let Q =
Y
i2I

pi. Let us

consider f �Q and f 0 �Q:

f �Q =
X
i2I

ci �
Y
k2I

k 6=i

pk f 0 �Q =
X
i2I

c0i �
Y
k2I

k 6=i

pk +
X
j2J

c0j
p0j
�
Y
i2I

pi

For each i 2 I, let �ei 2 �Ei be such that pi(�ei) = 0 and such that for any
k 2 (I �fig)[J we have pk(�ei) 6= 0. Let us remark that such �ei always exists

45

because the set of hyperplanes appearing in (I � fig) [J is �nite, and so the
union of their intersections with the hyperplane �Ei cannot be equal to �Ei. This
element ful�lls the following:

(f �Q)(�ei) = ci �
Y
k2I

k 6=i

pk(�ei) == (f 0 �Q)(�ei) = c0i �
Y
k2I

k 6=i

pk(�ei) +
X
j2J

c0j
p0j(�ei)

�
Y
i2I

pi(�ei)

We are assuming ci; c
0
i > 0. Besides, we have p0j(�ei) 6= 0 (for any j 2 J),Y

k2I

k 6=i

pk(�ei) 6= 0, and
Q

i2I pi(�ei) = 0. So, we obtain

(f �Q)(�ei) = ci �
Y
k2I

k 6=i

pk(�ei) == (f 0 �Q)(�ei) = c0i �
Y
k2I

k 6=i

pk(�ei)

which implies ci = c0i, for each i 2 I. Consequently, we can rewrite f and f 0 as

f =
X
i2I

ci
pi

f 0 =
X
i2I

ci
pi

+
X
j2J

c0j
p0j

In order to show that J = ; let us consider the values f(�0) and f 0(�0). We
obtain f(�0) =

P
i2I ci while f 0(�0) =

P
i2I ci +

P
j2J c

0
j. Given the fact that

f = f 0 and the values c0j (j 2 J) are greater than zero, we have
P

j2J c
0
j = 0,

which implies J = ;. From this result we immediately obtain that the function
h is in fact a bijection.

Now, we will consider the case when there exists a null tuple in the de�nition
of f . Note that there can exists at most a null tuple (because the tuples are
pairwise di�erent). That is, there exists k 2 I such that for any j 2 f1 : : : ng
we have dk;j = 0. In this case, we cannot use the previous reasoning consisting
in �nding a root of the associated polynomial (i.e. pk). Nevertheless, we can
perform this reasoning for the rest of the elements in I. We get the following
expressions for f and f 0:

f =
X

i2I�fkg

ci
pi

+ ck f 0 =
X

i2I�fkg

ci
pi

+
X
j2J

c0j
p0j

where I 0 = (I � fkg) [J . We still have to prove that J = fk0g, c0k0 = ck

and p0k0 = 1. Given the fact that f = f 0, we obtain ck =
P c0j

p0j
. Because ck is

a constant, the right hand side of the previous expression must be constant,
so that all the polynomials p0j must be equal

12 to 1. So, the associated tuples
will be null. Taking into account the hypothesis of the lemma (the tuples are

12 Let us suppose that there exists a polynomial being not equal to 1. If we pass
all the constant terms from the right hand side to the left one, and we compute
the sum of the remaining fractions in the right hand side, we obtain a polynomial
in the denominator which is of higher degree than the one in the numerator. If we
move the denominator to the left hand side of the expression, we have the equality
between two polynomials with a di�erent degree, which is not possible.

46

pairwise di�erent) there will be such a (unique) tuple in J , which �nishes the
proof.

Theorem 3.20 Let P and P 0 be processes. bA(P) � bA(P 0) i� bA(P) = bA(P 0).

Proof: The right to left implication is trivial since if two normal forms are
(syntactically) equal, up to commutativity, then they pass any test with the
same probability. For the left to right implication, let us consider the union
of the alphabets 13 of the processes �(P) [�(P 0) = fa1; : : : ; ang � Act . Note
that this set is �nite. Now, let us consider bA(P) and bA(P 0):

bA(P) = mM
i=1

[pi]
nX

j=1

[pi;j] aj ;Ci;j
bA(P 0) =

m0M
i=1

[p0i]
nX

j=1

[p0i;j] aj ;C
0
i;j

where, for the sake of simplicity, we have considered pi;j = 0 if the action aj
did not appear originally in the i-th summand of bA(P) and analogously forbA(P 0). Let Ai = f(aj; pi;j) j pi;j > 0g and A0

i = f(aj; p0i;j) j p
0
i;j > 0g. Depending

on the processes bA(P) and bA(P 0), we distinguish three cases:

(1) Both of them are �nite.
(2) One of them is �nite but the other one is not.
(3) Both of them are in�nite.

We will start with the �rst case, doing a proof by complete induction:

Base Step: We will prove that if two normal forms pass all the tests with the
same probability then their �rst oors are equal, that is

m = m0 ^ 8 1 � i � m : (pi = p0i ^ 8 1 � j � n : pi;j = p0i;j)

Let us suppose that both normal forms pass with the same probability any
test. In particular, for any probability distribution �q = hq1; q2; : : : qn; qn+1i we
consider the test

T �q =
n+1X
j=1

[qj] aj;Nil

with an+1 = !. If we compose this test with the process bA(P), we have
pass(bA(P) ; T �q) =

mX
i=1

pi �
qn+1

qn+1 +
nX

j=1

pi;j � qj

This is so because internal transitions are performed �rst, each of them with
probability equal to pi. Afterwards, the test will be passed only if the action !
is performed (with a probability equal to the quotient of the value associated

13 The alphabet of a process is de�ned by induction: �(Nil) = �(
) = �(X) = ;;
�(a;P) = fag[�(P); �(P +p Q) = �(P �p Q) = �(P)[�(Q); �(recX:P) = �(P).

47

with !, i.e. qn+1, by the corresponding normalization factor. Dividing and
multiplying in the previous expression by qn+1 we get

pass(bA(P) ; T �q) =
mX
i=1

pi �
1

1 +
nX

j=1

pi;j �
qj

qn+1

The same reasoning leads us to the following expression for bA(P 0)

pass(bA(P 0) ; T �q) =
m0X
i=1

p0i �
1

1 +
nX

j=1

p0i;j �
qj

qn+1

Let q0j =
qj

qn+1
. We are assuming that both normal forms are testing equivalent.

In particular, pass(bA(P) ; T �q) = pass(bA(P 0) ; T �q) . So, we obtain

mX
i=1

pi �
1

1 +
nX

j=1

pi;j � q0j

=
m0X
i=1

p0i �
1

1 +
nX

j=1

p0i;j � q
0
j

We can apply Lemma 3.18, 14 and we obtain m = m0, and for any 1 � i � m
and 1 � j � n we have pi = p0i and pi;j = p0i;j. So, we have proven that both
normal forms have the same �rst oor.

Inductive Step: We will suppose that both normal forms have the same �rst

oor, but (at least) one of the continuations is di�erent. That is, there exists
a state Ai and an action aj 2 Act(Ai), such that Ci;j 6= C 0

i;j. We will give a
test such that our normal forms pass it with di�erent probabilities. So, this
will be a proof by contrapositive.

Let us consider the initial states of bA(P) having (at least) a continuation after
an action di�erent from the one corresponding to bA(P 0). We will chose one of
these states being minimal in the following sense:

Let Aj be a state of the process bA(P) such that there exists ak 2 Act(Aj),
such that Cj;k 6= C 0

j;k, and such that for any state Ar of the process bA(P),
with Act(Ar) � Act(Aj), we have Cr;s = C 0

r;s, for any as 2 Act(Ar).

14 This statement needs additional explanation. The hypothesis of Lemma 3.18 re-
quire the functions to be equal for any value of the variables (i.e. for any tuple in
IRn), while we only have this equality for the values q01; : : : ; q

0
n, such that q0i > 0

and
P

q0i =
1�qn+1
qn+1

. If we consider the limit when qn+1 tends to zero, we can get

arbitrarily high values of the variables q0i, and so we obtain that these two functions
are equal for any positive value of the variables q0i. Note that these functions are
rational. So, if they are equal for any value of the positive region of IRn then they
are also equal for any value of IRn. So, we can apply Lemma 3.18.

48

Note that such a state always exists. Obviously, the chosen state must be
di�erent from the empty set because there are no continuations after the empty
state. For the sake of simplicity, we suppose Act(Aj) = fa1; : : : ; ak; : : : ; arg �
fa1; : : : ; ang = �(P) [�(P 0). Once we have �xed the minimal state Aj, we
will split the immediately reachable states in three groups: States whose set of
actions is contained in the actions of Aj; states whose set of actions is equal to
that of Aj; the rest of states, that is, those states having actions not belonging
to those in Aj. Formally:

A1 = fi j 9p;Q : bA(P) �
=)p Q ^ S(Q) = Ai ^ Act(Ai) � Act(Aj)g

A2 = fi j 9p;Q : bA(P) �
=)p Q ^ S(Q) = Ai ^ Act(Ai) = Act(Aj)g

A3 = fi j 9p;Q : bA(P) �
=)p Q ^ S(Q) = Ai ^ i =2 A1 [A2g

These sets will be used when we consider the composition of processes and
tests. We supposed Cj;k 6= C 0

j;k. So, by induction hypothesis, there exists a test
T distinguishing them: pass(Cj;k ; T) 6= pass(C 0

j;k ; T) . At least one of these
values must be di�erent from zero. Let us suppose that pass(Cj;k ; T) > 0
(the symmetrical case is equivalent). Then, for any probability distribution
�q = hq1; q2; : : : qri and any 0 < Æ < 1, we consider the test

T �q
k;Æ = (

rX
s=1

[qs] as;Ts) +Æ (
nX

s=r+1

[
1

n� r
] as;Nil) where Ts =

8><>: T if s = k

Nil otherwise

Note that if n = r then the second sum does not appear. If we consider the
composition of these tests and bA(P) we obtain:

pass(bA(P) ; T �q
k;Æ) =

X
i2A1

pi �
Æ � qk � pi;k � pass(Ci;k ; T)

rX
s=1

Æ � pi;s � qs

(1)

+
X
i2A2

pi �
Æ � qk � pi;k � pass(Ci;k ; T)

rX
s=1

Æ � pi;s � qs

(2)

+
X
i2A3

pi �
Æ � qk � pi;k � pass(Ci;k ; T)

rX
s=1

Æ � pi;s � qs+
nX

s=r+1

(1� Æ) � pi;s �
1

n�r

(3)

Note that in the previous expression, in the three cases, if for any i we have
ak =2 Ai then the continuation Ci;k does not exist. This fact does not cause
any problem because pi;k would be equal to 0. So, the corresponding summand
would disappear. If n = r then the last summand, that is expression (3), does
not appear, and the Æ's appearing in the other two expressions disappear.
Symmetrically, we also have:

49

pass(bA(P 0) ; T �q
k;Æ) =

X
i2A1

pi �
Æ � qk � pi;k � pass(C 0

i;k ; T)
rX

s=1

Æ � pi;s � qs

(4)

+
X
i2A2

pi �
Æ � qk � pi;k � pass(C

0
i;k ; T)

rX
s=1

Æ � pi;s � qs

(5)

+
X
i2A3

pi �
Æ � qk � pi;k � pass(C

0
i;k ; T)

rX
s=1

Æ � pi;s � qs+
nX

s=r+1

(1� Æ) � pi;s �
1

n�r

(6)

We will do the proof by contradiction. That is, we will suppose that both
normal forms pass all the tests with the same probability and we will get
Cj;k = C 0

j;k. If both normal forms pass with the same probability any test,
in particular, they will pass with the same probability the tests of the form
T �q
k;Æ, that is pass(bA(P) ; T �q

k;Æ) = pass(bA(P 0) ; T �q
k;Æ) , for any 0 < Æ < 1 and

any probability distribution �q. Because the previous equality holds for any
0 < Æ < 1, it also holds if we consider the limit when Æ tends to zero:

lim
Æ!0

pass(bA(P) ; T �q
k;Æ) = lim

Æ!0
pass(bA(P 0) ; T �q

k;Æ) (8 �q) (7)

If we look at the previous expression, we observe that if Æ tends to zero
then expressions (3) and (6) tends also to zero. Note that for each i 2 A3,
the numerator would tend to zero, while the denominator would tend toPn

s=r+1 pi;s �
1

n�r > 0. Moreover, because of the election of the state Aj, the
summands (1) and (4) have the same value because they have identical con-
tinuations, the processes Ci;k and C 0

i;k, for any i 2 A1. Therefore, if the equal-
ity (7) holds, and taking into account the previous discussion, then for any
probability distribution �q = hq1; q2; : : : qri the equality between expressions (2)
and (5) must hold. If we divide each summand by Æ � qk � pi;k we obtain:

X
i2A2

pi �
pass(Ci;k ; T)

1+
rX

s = 1
s6=k

pi;s
pi;k

�

qs
qk

=
X
i2A2

pi �
pass(C 0

i;k ; T)

1+
rX

s = 1
s6=k

pi;s
pi;k

�

qs
qk

If we remove null summands and we let q0s =
qs
qk
, we obtain:

X
pass(Ci;k ; T) 6=0

i2A2

pi �
pass(Ci;k ; T)

1+
rX

s = 1
s6=k

pi;s
pi;k

�q0s

=
X

pass(C0
i;k

; T) 6=0

i2A2

pi �
pass(C 0

i;k ; T)

1+
rX

s = 1
s6=k

pi;s
pi;k

�q0s

Now, we can apply Lemma 3.18, because all the summands are di�erent from
zero, and applying Lemma 3.19 to the summands of the form pi;s

pi;k
we have that

50

the corresponding tuples are di�erent. Taking into account pass(Cj;k ; T) > 0
and j 2 A2, there exists j 0 2 A2 verifying the following conditions:

(1) pass(Cj;k ; T) = pass(C 0
j0;k ; T) .

(2) 8 1 � s � r; s 6= k : pj;s
pj;k

=
pj0;s
pj0;k

.

Note that
P
pj;s = 1 =

P
pj0;s. So, by applying again Lemma 3.19, we obtain

pj;s = pj0;s, for any 1 � s � r. Given the fact that these tuples correspond to
states of a process, and so there are no repetitions, we must have j = j 0. But if
j = j 0 then pass(Cj;k ; T) = pass(C 0

j;k ; T) , which contradicts our assumption.
This �nishes the proof for the case when both processes are �nite.

If only one of the processes is �nite, let us suppose that its depth is equal to n
(i.e. any sequence longer than n returns ; as acceptance sets). Then, we can
consider the n+ 1 �rst oors of the in�nite process, and we can use the same
reasoning that for �nite process. Note that in its n + 1th oor, the in�nite
process must have some continuations, because otherwise it would be �nite.

If both processes are in�nite but di�erent then the di�erence between them
must appear in �nite time. That is, there exists a �nite sequence s such that
A(bA(P); s) 6= A(bA(P 0); s). So we can use the previous reasoning, considering
the processes until depth jsj.

Theorem 4.3 (PATAct;vPAT) is a complete partial order (cpo).

Proof: We must prove the existence of both minimal element and least upper
bound for each chain. First, let us show that the tree R 2 PATAct de�ned as
p(R; s; A) = 0, for any s and A is the minimal element. Indeed, ifR0 2 PATAct
we have p(R; s; A) = 0 � p(R0; s; A), for any s and A. So, we have R vPAT R

0.

In order to show the existence of least upper bound, let fRngn2IN be a chain
in PATAct. The element tRn is given by p(tRn; s; A) = limn2IN p(Rn; s; A).
Let us show that tRn is well de�ned. The elements Rn form a chain. So, we
have that the values p(Rn; s; A) are an increasing succession bounded by 1.
Therefore, there exists the limit of this succession, which will be less than
or equal to 1. Moreover, if there would exist an internal node of the limit
tree such that the sum of the probabilities associated with its outgoing arcs
is equal to 1 + � (with � > 0), then there exists j 2 IN such that in that
internal node of the tree Rj, the sum of the probabilities is equal to 1 + Æ,
with 0 < Æ � �. But this is not possible because the elements of the chain are
trees. So, tRn is well de�ned. Once de�ned, we must prove that it is the least
upper bound of the chain. First, we show that tRn is an upper bound of the
chain. Let Rj be an element of the chain. We must show that for any sequence
s and any state A, p(Rj; s; A) � p(tRn; s; A) holds. But this is trivial since
p(tRn; s; A) = lim

n2IN
p(Rn; s; A) � p(Rj; s; A). Finally, we will prove that tRn

51

is in fact the least upper bound. Let R 2PATAct be such that Rn vPAT R,
for any n 2 IN. We have the following implications:

Rn vPAT R (8 n 2 IN) =) p(Rn; s; A) � p(R; s;A) (8s;A ^ 8 n 2 IN)

=) limn2IN p(Rn; s; A) � p(R; s;A) (8s;A)

=) p(tRn; s; A) � p(R; s;A) (8s;A)

=) tRn vPAT R

Proposition 4.7 For any a 2 Act , the function a; :: PATAct �! PATAct
is monotonous and continuous. Moreover, for any 0 < p < 1, the functions
�p ; +p :: PATAct�PATAct �! PATAct are monotonous and continuous
in both arguments.

Proof: In order to show the monotony of a; :: PATAct �! PATAct, let
R;R0 2 PATAct be such that R vPAT R0. We must prove a;R vPAT a;R0, or
equivalently, that for any s; A we have p(R; s; A) � p(R0; s; A). We distinguish
three cases:

� s = � ^ A = f(a; 1)g. We have p(a;R; �; A) = 1 � 1 = p(a;R0; �; A).
� s = hf(a; 1)g ai Æ s0. For each state A we have p(a;R; s; A) = p(R; s0; A) �
p(R0; s0; A) = p(a;R0; s; A).

� For the rest of the sequences, we have p(a;R; s; A) = 0 � 0 = p(a;R0; s; A).

In order to show the continuity of a; :: PATAct �! PATAct, let fRngn2IN be
a chain inPATAct. We have that fa;Rngn2IN are also a chain (because we have
showed that the pre�x operator is monotonous). We must prove that for any
sequence s and state A the following identity holds: p(a;tfRngn2IN; s; A) =
p(tfa;Rngn2IN; s; A). This follows from the following chain of equalities:

p(a;tfRngn2IN; s; A) =

8>>>><>>>>:
1 if s = � ^ A = f(a; 1)g

p(tfRngn2IN; s
0; A) if s = hf(a; 1)g ai Æ s0

0 otherwise

=

8>>>><>>>>:
1 if s = � ^ A = f(a; 1)g

lim
n2IN

p(Rn; s
0; A) if s = hf(a; 1)g ai Æ s0

0 otherwise

= lim
n2IN

8>>>><>>>>:
1 if s = � ^ A = f(a; 1)g

p(Rn; s
0; A) if s = hf(a; 1)g ai Æ s0

0 otherwise

= lim
n2IN

p(a;Rn; s; A) = p(tfa;Rngn2IN; s; A)

52

Next we will prove the result for �p :: PATAct�PATAct �! PATAct. Be-
cause of symmetry, it is enough to perform the proof for one of the arguments.
We choose the �rst one. We start with monotony. Let R1; R2 2 PATAct be
such that R1 vPAT R2. We must prove that R1 �p R vPAT R2 �p R holds for
any R 2 PATAct, or equivalently, that for any sequence s and state A we
have p(R1 �p R; s; A) � p(R2 �p R; s; A). But this is straightforward since we
have the following: p(R1 �p R; s; A) = p � p(R1; s; A) + (1 � p) � p(R; s; A) �
p � p(R2; s; A) + (1� p) � p(R; s; A) = p(R2 �p R; s; A).

For the proof of continuity, let fRngn2IN be a chain in PATAct. We have that
the trees fRn �p Rgn2IN are also a chain (because we have showed that the
internal choice operator is monotonous). We must prove that for any sequence
s and state A, we have p(tfRngn2IN �p R; s; A) = p(tfRn �p Rgn2IN; s; A).
This follows from the following chain of equalities

p(tfRngn2IN �p R; s;A) = p � p(tfRngn2IN; s; A) + (1� p) � prob(R; s;A)

= p � (lim
n2IN

p(Rn; s; A)) + (1� p) � p(R; s;A)

= lim
n2IN

(p � p(Rn; s; A) + (1� p) � p(R; s;A))

= lim
n2IN

p(Rn �p R; s;A) = p(tfRn �p Rgn2IN; s; A)

Finally, the proof for the functions +p :: PATAct�PATAct �! PATAct
is again shown only for the �rst argument. In order to prove monotony, let
R1; R2 2 PATAct be such that R1 vPAT R2. We have to prove that for any
tree R 2 PATAct, R1 +p R vPAT R2 +p R holds, or equivalently, that for any
sequence s and state A, p(R1 +p R; s; A) � p(R2 +p R; s; A) holds. We will
prove it by induction on the length of s. If s = � we have:

p(R1 +p R; �;A) =
X

A=B[pC

p(R1; �; B) � p(R; �; C)

�
X

A=B[pC

p(R2; �; B) � p(R; �; C) = p(R2 +p R; �;A)

If s = hAai Æ s0, where sB = hB ai Æ s0 and sC = hC ai Æ s0, we have:

p(R1 +p R; s;X) =
X

A=B[pC

p�pro(a;B)
p�pro(a;B)+(1�p)�pro(a;C) � p(R1; sB ;X)�p(R;C)

+
X

A=B[pC

(1�p)�pro(a;C)
p�pro(a;B)+(1�p)�pro(a;C) � p(R; sC ;X)�p(R1; B)

�
X

A=B[pC

p�pro(a;B)
p�pro(a;B)+(1�p)�pro(a;C) � p(R2; sB ;X)�p(R;C)

+
X

A=B[pC

(1�p)�pro(a;C)
p�pro(a;B)+(1�p)�pro(a;C) � p(R; sC ;X)�p(R2; B)

= p(R2 +p R; s;X)

53

Finally, for showing the continuity of the external choice semantic function, let
fRngn2IN be a chain in PATAct. We have that the trees fRn+pRgn2IN are also
a chain (we have proved that the external choice operator is monotonous). We
must prove that for any sequence s and state A, the following equality holds:
p(tfRngn2IN+pR; s; A) = p(tfRn+pRgn2IN; s; A). We will perform the proof
by induction. For s = � we have

p(tfRngn2IN +p R; �;A) =
X

A=B[pC

p(tfRngn2IN; �; B) � p(R; �; C)

=
X

A=B[pC

(lim
n2IN

p(Rn; �; B)) � p(R; �; C)

= lim
n2IN

X
A=B[pC

p(Rn; �; B) � p(R; �; C)

= lim
n2IN

p(Rn +p R; �;A) = p(tfRn +p Rgn2IN; �; A)

If s = hAai Æ s0, where sB = hB ai Æ s0 and sC = hC ai Æ s0, we have:

p(tfRngn2IN +p R; s;X) =

=
X

A=B[pC

p�pro(a;B)
p�pro(a;B)+(1�p)�pro(a;C) � p(tfRngn2IN; sB;X)�p(R;C)

+
X

A=B[pC

(1�p)�pro(a;C)
p�pro(a;B)+(1�p)�pro(a;C) � p(R; sC ;X)�p(tfRngn2IN; B)

=
X

A=B[pC

p�pro(a;B)
p�pro(a;B)+(1�p)�pro(a;C) � (limn2IN

p(Rn; sB;X))�p(R;C)

+
X

A=B[pC

(1�p)�pro(a;C)
p�pro(a;B)+(1�p)�pro(a;C) � p(R; sC ;X)�(lim

n2IN
p(Rn; B))

= lim
n2IN

X
A=B[pC

p�pro(a;B)
p�pro(a;B)+(1�p)�pro(a;C) � p(Rn; sB ;X)�p(R;C)

+ lim
n2IN

X
A=B[pC

(1�p)�pro(a;C)
p�pro(a;B)+(1�p)�pro(a;C) � p(R; sC ;X)�p(Rn; B)

= lim
n2IN

0BBBB@
X

A=B[pC

p�pro(a;B)
p�pro(a;B)+(1�p)�pro(a;C) � p(Rn; sB ;X)�p(R;C)

+
X

A=B[pC

(1�p)�pro(a;C)
p�pro(a;B)+(1�p)�pro(a;C) � p(R; sC ; X)�p(Rn; B)

1CCCCA
= lim

n2IN
p(Rn +p R; s;A) = p(tfRn +p Rgn2IN; s; A)

Theorem 4.9 For any process P and any sequence s, we have

p([[P]]; s; A) =
X
P 0

fj pi j P
s

=)pi P
0 ^ S(P 0) = A jg

54

Proof: We will do the proof by a double induction: Structural induction and
induction on the length of the sequence s.

P = Nil

Let us consider s = �. The process Nil is stable and S(Nil) = ;. Thus, we
have

P
Q0 fj pi j Nil

�
=)pi Q

0 ^ S(Q0) = ; jg = 1. Moreover, we also haveP
Q0 fj pi jNil

�
=)pi Q

0 ^ S(Q0) = A ^ A 6= ; jg = 0. Besides, p([[Nil]]; �; ;) = 1,
and p([[Nil]]; �; A) = 0, for any A 6= ;.

If s = hB biÆs0 we have Nil 6
s

=) . So,
P

Q0 fj pijNil
s

=)pi Q
0 ^ S(Q0) = A jg = 0,

for any state A. Besides, if s 6= � then p([[Nil]]; s; A) = 0 for any state A.

P =

 cannot become stabilized (i.e.
 6
s

=)). This implies P 6
s

=) for any sequence
s. So,

P
Q0 fj pi j

s
=)pi Q

0 ^ S(Q0) = A jg = 0, for any state A. Besides, for
any sequence s and state A we have p([[
]]; s; A) = 0.

P = a;P 0

Let us consider s = �. The process P is stable and such that S(P) = f(a; 1)g.
So,

P
Q0 fj pi j P

�
=)pi Q

0 ^ S(Q0) = f(a; 1)g jg = 1 while for any other state

we have
P

Q0 fj pi j P
�

=)pi Q
0 ^ S(Q0) = A ^ A 6= f(a; 1)g jg = 0. Besides,

p([[P]]; �; f(a; 1)g) = 1, while if A 6= f(a; 1)g then p([[P]]; �; A) = 0.

Now, we consider s = hB bi Æ s0. We have that P can perform only the transi-
tion P

a
�!1 P

0. Therefore, if B 6= f(a; 1)g then P 6
s

=) . So, for any state A we
have

P
Q0 fj pi j P

s
=)pi Q

0 ^ S(Q0) = A jg = 0. Similarly, for any state A we
have p([[P]]; s; A) = 0. Let us suppose now that B = f(a; 1)g and so b = a. We

have P
hB aiÆs0

===)p Q i� P 0 s0
=)p Q. So,

P
Q0 fj pi j P

s
=)pi Q

0 ^ S(Q0) = A jg =P
Q0 fj pi jP 0 s0

=)pi Q
0 ^ S(Q0) = A jg. On the one hand, by induction hypothe-

sis, we have
P

Q0 fj pi jP 0 s0
=)pi Q

0 ^ S(Q0) = A jg = p([[P 0]]; s0; A) while on the
other hand, by the de�nition of [[a;P 0]], we have p([[P 0]]; s0; A) = p([[P]]; s; A).
Finally, putting together the previous equalities, we obtain the desired result:P

Q0 fj pi j P
s

=)pi Q
0 ^ S(Q0) = A jg =p([[P]]; s; A).

P = P1 �p P2

P can perform two internal transitions: P >�!p P1 and P >�!1�p P2. So,
the probability with which P performs the sequence s is equal to the addition
of the probabilities with which P1 and P2 perform this sequence, multiplied

55

by p and 1� p, respectively. That is,

X
Q0

fj pi j P
s

=)pi Q
0 ^ S(Q0) = A jg= p �

X
Q0

fj pi j P1
s

=)pi Q
0 ^ S(Q0) = A jg

+ (1� p) �
X
Q0

fj pi j P2
s

=)pi Q
0 ^ S(Q0) = A jg

Besides, by the de�nition of the semantic function �p, we have p([[P]]; s; A) =
p �p([[P1]]; s; A)+(1�p) �p([[P2]]; s; A), while by induction hypothesis we obtain
both p([[P1]]; s; A) =

P
Q0 fj pi j P1

s
=)pi Q

0 ^ S(Q0) = A jg and p([[P2]]; s; A) =P
Q0 fj pi j P2

s
=)pi Q0 ^ S(Q0) = A jg. So, we �nally get p([[P]]; s; A) =P

Q0 fj pi j P
s

=)pi Q
0 ^ S(Q0) = A jg.

P = P1 +p P2

If one of the process cannot become stable (i.e. P1 6
�

=) _ P2 6
�

=)) then P
cannot become stable. So,

P
Q0 fj pijP

s
=)pi Q

0 ^ S(Q0) = A jg = 0 for any state
A and sequence s. Besides, by the de�nition of +p, we have p([[P]]; s; A) = 0
for any state A and sequence s. So, the result holds in this case.

Let us now assume that both of them can be stabilized. We will perform again
the proof by induction on the length of s.

s = �: Process P can perform the empty sequence once P1 and P2 become
stable. Let us consider the values pP1A =

P
Q0 fj pi j P1

�
=)pi Q

0 ^ S(Q0) = A jg

and pP2A =
P

Q0 fj pi j P2
�

=)pi Q0 ^ S(Q0) = A jg. The states reachable
by P after the empty sequence are those given by De�nition 4.4, consid-
ering the corresponding reachable states of P1 and P2. That is, we haveP

Q0 fj pi j P
�

=)pi Q
0 ^ S(Q0) = A jg =

P
A1;A2

fj pP1A1
�pP2A2

jA = A1[pA2 jg. Be-
sides, p([[P1 +p P2]]; �; A) =

P
A=B[pC p([[P1]]; �; B) � p([[P2]]; �; C). By induction

hypothesis we have p([[P1]]; �; B) = pP1B and p([[P2]]; �; C) = pP2C . So, we obtain
the required result: p([[P1+p P2]]; �; A) =

P
Q0 fj pi jP

�
=)pi Q

0 ^ S(Q0) = A jg.

s = hB bi Æ s0: Process P can perform the sequence s if the process P1 performs
a generalized internal transition, becoming a process P 0

1 having as associated
state B1, the process P2 performs a generalized internal transition, becoming
a process P 0

2 having as associated state B2, and B = B1 [p B2. That is, if
P1 >�!�

p1 P 0
1 and P2 >�!�

p2 P 0
2, then P >�!�

p1�p2 P 0
1 +p P

0
2 (applying rules

(EXT1), (EXT2), and (EXT3)). Now, we have three possibilities:

3 P 0
1

b
�! ^ P 0

2 6
b

�!

In this case, P performs b from P 0
1 and then performs the sequence s0. That

56

is, we have the following:

� P1 >�!
�
p1 P

0
1

b
�!p01

P 00
1

s0
=)p001

Q0 ^ S(P 0
1) = B1 ^ S(Q0) = A

� P2 >�!
�
p2 P

0
2 ^ S(P 0

2) = B2 ^ P 0
2 6

b
�! ^ B = B1 [p B2

We have P >�!�
p1�p2

P 0
1 +p P

0
2

b
�!p�p01

P 00
1

s0
=)p001

Q0, so 15

P
s

=)q Q
0 ^ S(Q0) = A i� q = p1 � p2 �

p�p01

p�
P

Q0
fj qi j P 0

1

b
�!qi

Q0 jg
� p001

i� P1
sB1=)q0 Q

0 ^ P2 >�!
�
p2 P

0
2

where sB1 = hB1 bi Æ s
0 and q0 = p1 �

p01P
Q0
fj qi j P 0

1

b
�!qi

Q0 jg
� p001. We have that

S(P 0
1) = B1 implies

P
Q0 fj qi j P 0

1
b

�!qi Q0 jg = pro(b; B1). If we group the
summands of this form, we obtain 16

X
B = B1 [p B2

b2B1 ^ b=2B2

0BBB@
X
Q0

fj qi j P1
sB1=)qi Q

0 ^ S(Q0) = A jg

�
X
Q0

fj qi j P2
�

=)qi Q
0 ^ S(Q0) =B2 jg

1CCCA (8)

3 P 0
1 6

b
�! ^ P 0

2
b

�!

Using a similar reasoning we obtain:

X
B = B1 [p B2

b=2B1 ^ b2B2

0BBB@
X
Q0

fj qi j P1
�

=)qi Q
0 ^ S(Q0) = B1 jg

�
X
Q0

fj qi j P2
sB2=)qi Q

0 ^ S(Q0) =A jg

1CCCA (9)

3 P 0
1

b
�! ^ P 0

2
b

�!

In this case, P will perform either one of the transitions labeled by b from
the ones that P 0

1 can perform or one of the corresponding to P 0
2, multiplying

the probabilities associated with these transitions by p and 1�p, respectively.
Depending on which process performs b, we will have two cases:

15 Formally, we should distinguish two cases in the expression that follows: B2 = ;

and B2 6= ;. In the �rst case, instead of the transition
b

�!p�p01
, we would have

b
�!p01

.

This does not cause any problem because when considering P
s

=)q, the value of p
would not inuence the probability q. The same comment is valid in the following
case for (1� p) � p02.
16 In the rest of the proof b 2 X (resp. b =2 X) stands for pro(b;X) > 0 (resp.
pro(b;X) = 0).

57

4 P 0
1 performs action b.

In this case, we have:

� P1 >�!
�
p1 P

0
1

b
�!p01

P 00
1

s0
=)p001

Q0 ^ S(P 0
1) = B1 ^ S(Q0) = A

� P2 >�!
�
p2 P

0
2 ^ S(P 0

2) = B2 ^ P 0
2

b
�! ^ B = B1 [p B2

So, P >�!�
p1�p2 P

0
1 +p P

0
2

b
�!p�p01

P 00
1

s0
=)p001

Q0. We have:

P
s

=)q Q
0 ^ S(Q0) = A

i� q = p1 � p2 �
p�p01

p�
P

Q0
fj qi j P 0

1

b
�!qi

Q0 jg+(1�p)�
P

Q0
fj qi j P 0

2

b
�!qi

Q0 jg
� p001

i� P1
sB1=)q0 Q

0 ^ P2 >�!
�
p2 P

0
2

^ q =
p�
P

Q0
fj qi j P 0

1

b
�!qi

Q0 jg

p�
P

Q0
fj qi j P 0

1

b
�!qi

Q0 jg+(1�p)�
P

Q0
fj qi j P 0

2

b
�!qi

Q0 jg
� q0 � p2

where sB1 = hB1 bi Æ s0 and q0 = p1 �
p01P

Q0
fj qi j P 0

1

b
�!qi

Q0 jg
� p001. Note that

S(P 0
1) = B1 and S(P 0

2) = B2 imply
P

Q0 fj qi j P 0
1

b
�!qi Q

0 jg = pro(b; B1) andP
Q0 fj qi j P 0

2
b

�!qi Q
0 jg = pro(b; B2). Finally, if we group these summands, we

obtain: X
B = B1 [p B2

b2B1 ^ b2B2

p�pro(b;B1)
p�pro(b;B1)+(1�p)�pro(b;B2)

�
X
Q0

fj qi j P1
sB1=)qi Q

0 ^ S(Q0) = A jg

�
X
Q0

fj qi j P2
�

=)qi Q
0 ^ S(Q0) =B2 jg (10)

4 P 0
2 performs action b.

Using a similar reasoning we get:X
B = B1 [p B2

b2B1 ^ b2B2

(1�p)�pro(b;B2)
p�pro(b;B1)+(1�p)�pro(b;B2)

�
X
Q0

fj qi j P2
sB2=)qi Q

0 ^ S(Q0) = A jg

�
X
Q0

fj qi j P1
�

=)qi Q
0 ^ S(Q0) =B1 jg (11)

Putting together the previous expressions we obtain (8) + (9) + (10) + (11) =P
Q0 fj qi jP

s
=)qi Q

0 ^ S(Q0) = A jg. Besides, by the de�nition of the external
choice semantic operator, we have

p([[P1 +p P2]]; s; A) =
X

B=B1[pB2

p�pro(b;B1)
p�pro(b;B1)+(1�p)�pro(b;B2)

� p([[P1]]; sB1 ; A) � p([[P2]]; �; B2)

+
X

B=B1[pB2

(1�p)�pro(b;B2)
p�pro(b;B1)+(1�p)�pro(b;B2)

� p([[P2]]; sB2 ; A) � p([[P1]]; �; B1)

58

where sB1 = hB1 biÆs0 and sB2 = hB2 biÆs0. As before, the previous expression
can be split into four sums:

p([[P1 +p P2]]; s; A) =X
B = B1 [p B2

b2B1 ^ b=2B2

p([[P1]]; sB1 ; A) � p([[P2]]; �; B2)

+
X

B = B1 [p B2

b=2B1 ^ b2B2

p([[P2]]; sB2 ; A) � p([[P1]]; �; B1)

+
X

B = B1 [p B2

b2B1 ^ b2B2

p�pro(b;B1)
p�pro(b;B1)+(1�p)�pro(b;B2)

� p([[P1]]; sB1 ; A) � p([[P2]]; �; B2)

+
X

B = B1 [p B2

b2B1 ^ b2B2

(1�p)�pro(b;B2)
p�pro(b;B1)+(1�p)�pro(b;B2)

� p([[P2]]; sB2 ; A) � p([[P1]]; �; B1)

where sB1 = hB1 bi Æ s0 and sB2 = hB2 bi Æ s0. Note that in the �rst two

summands, the factors p�pro(b;B1)
p�pro(b;B1)+(1�p)�pro(b;B2)

and (1�p)�pro(b;B2)
p�pro(b;B1)+(1�p)�pro(b;B2)

have

disappeared. The reason is that in the �rst case pro(b; B1) = 0 while in the
second case we have pro(b; B2) = 0. By induction hypothesis we obtain:

p([[P1]]; sB1 ; A) =
P

Q0 fj qi j P1
sB1=)qi Q

0 ^ S(Q0) = A jg

p([[P1]]; �; B1) =
P

Q0 fj qi j P1
�

=)qi Q
0 ^ S(Q0) = B1 jg

p([[P2]]; sB2 ; A) =
P

Q0 fj qi j P2
sB2=)qi Q

0 ^ S(Q0) = A jg

p([[P2]]; �; B2) =
P

Q0 fj qi j P2
�

=)qi Q
0 ^ S(Q0) = B2 jg

which easily implies the desired result:X
Q0

fj qi j P
s

=)qi Q
0 ^ S(Q0) = A jg = p([[P1 +p P2]]; s; A)

Finally, we consider recursion. Let P = recX:P 0(X). In order to simplify the
presentation, we will show the proof only for the case when P 0(X) is �nite
(that is, it does not contain occurrences of recursion). Given the fact that the
Pn are �nite, we have p([[Pn]]; s; A) =

P
P 00
n
fj pi j Pn

s
=)pi P

00
n ^ S(P 00

n) = A jg.
So, we deduce

lim
n2IN

X
P 00
n

fj pi j Pn
s

=)pi P
00
n ^ S(P 00

n) = A jg = lim
n2IN

p([[Pn]]; s; A) (12)

We must show that this value is equal to
P

P 0 fj pi jP
s

=)pi P
0 ^ S(P 0) = A jg,

that is, that the operational semantics is continuous in some sense. Applying

59

Lemma 4.8 from right to left, we obtain

lim
n2IN

X
P 00
n

fj pi j Pn
s

=)pi P
00
n ^ S(P 00

n) = A jg

�
X
P 0

fj pi j P
s

=)pi P
0 ^ S(P 0) = A jg

(13)

It still remains to prove the converse. We have that for any Æ > 0 there exists
a �nite multiset of computations of the form P

s
=)q P

0, namely FÆ, such thatX
FÆ

fj pi j P
s

=)pi P
0 ^ S(P 0) = A jg >

X
P 0

fj pi j P
s

=)pi P
0 ^ S(P 0) = A jg � Æ

Given the fact that FÆ is a �nite multiset of computations P
s

=)q P 0, by
applying Lemma 4.8 from left to right, we obtain that there exist n such that
the computations belonging to FÆ correspond to computations Pn

s
=)q P 00

n .
So,X

FÆ

fj pi j P
s

=)pi P
0 ^ S(P 0) = A jg �

X
P 00
n

fj pi j Pn
s

=)pi P
00
n ^ S(P 00

n) = A jg

Considering the limit when n tends to in�nite we obtainX
P 0

fj pi jP
s

=)pi P
0 ^ S(P 0) = A jg� Æ < lim

n2IN

X
P 00
n

fj pi jPn
s

=)pi P
00
n ^ S(P 00

n) = A jg

Moreover, considering the limit when Æ tends to zero we conclude

X
P 0

fj pi j P
s

=)pi P
0 ^ S(P 0) = A jg

� lim
n2IN

X
P 00
n

fj pi j Pn
s

=)pi P
00
n ^ S(P 00

n) = A jg
(14)

Combining (13) and (14) we obtain
P

P 0 fj pi j P
s

=)pi P
0 ^ S(P 0) = A jg =

limn2IN
P

P 00
n
fj pi j Pn

s
=)pi P

00
n ^ S(P 00

n) = A jg. Finally, considering the pre-
vious equality together with expression (12) and taking into account that,
by de�nition, p([[P]]; s; A) = lim p([[Pn]]; s; A), we obtain the desired result:
p([[P]]; s; A) =

P
P 00
n
fj pi j P

s
=)pi P

00
n ^ S(P 00

n) = A jg.

The general case in which the processes can contain recursions inside P 0 is a
little bit more involved. We need to unfold all the recursions at the same time
and perform an additional induction on the number of times that recursion
has been unwound.

Proposition 5.7 The axioms (II), (CI), (AI), (CE), (NE), (D), (DI), (DE),
(NE), (DEI), (EBE), and (IBE) are sound.

Proof: The proofs for the �rst �ve axioms are easy with respect to the test-
ing semantics �. Let us remind that the set of probabilistic barbs have the

60

same discriminatory power as the whole family of tests. As an example, let
us consider the soundness proof for (II). Let T 2 PB. Given the fact that
this test cannot perform internal transitions, the only possible transitions
that the composition of the process R = P �p P and the test T can per-
form are R j T >�!p P j T and R j T >�!1�p P j T . Thus, we deduce
pass(R ; T) = p � pass(P ; T) + (1� p) � pass(P ; T) = pass(P ; T) .

Soundness proofs for (D), (DI), and (DE) are trivial with respect to vPAT.

Next we show the soundness of (DEI). Let T 2 PB. Applying reiteratively
the rules (EXT1); (EXT2) and (EXT3) we obtain:

Pi >�!
�
ri P

0
i =)

�
P1 +p P2 >�!

�
r1�r2 P

0
1 +p P

0
2

�
^
�
P1 +p P3 >�!

�
r1�r3 P

0
1 +p P

0
3

�

=)

8><>: (P1 +p P2)�q (P1 +p P3) >�!
�
q�r1�r2 (P

0
1 +p P

0
2)

(P1 +p P2)�q (P1 +p P3) >�!
�
(1�q)�r1�r3

(P 0
1 +p P

0
3)

Pi >�!
�
ri P

0
i =)

�
P2 �q P3 >�!

�
q�r2 P

0
2

�
^
�
P2 �q P3 >�!

�
(1�q)r2

P 0
3

�

=)

8><>:P1 +p (P2 �q P3) >�!
�
r1�q�r2 (P

0
1 +p P

0
2)

P1 +p (P2 �q P3) >�!
�
r1�(1�q)�r3

(P 0
1 +p P

0
3)

From the previous results we obtain

(P1 +p P2)�q (P1 +p P3) >�!
�
r (P

0
1 +p P

0
2) i� P1 +p (P2 �q P3) >�!

�
r (P

0
1 +p P

0
2)

(P1 +p P2)�q (P1 +p P3) >�!
�
r (P

0
1 +p P

0
3) i� P1 +p (P2 �q P3) >�!

�
r (P

0
1 +p P

0
3)

For any i 2 f1; 2; 3g, let us consider the following multisets of pairs (process,
probability): ~Pi = fj (P 0

i ; ri) jPi >�!
�
ri
P 0
i jg. If we combine the previous results

we obtain

pass((P1 +p P2)�q (P1 +p P3) ; T)

=
P
fj q � r1 � r2 � pass(P

0
1 +p P

0
2 ; T) j (P

0
1; r1) 2

~P1 ^ (P 0
2; r2) 2

~P2 jg

+
P
fj (1� q) � r1 � r3 � pass(P

0
1 +p P

0
3 ; T) j (P

0
1; r1) 2 ~P1 ^ (P 0

3; r3) 2 ~P3 jg

=
P
fj r1 � q � r2 � pass(P

0
1 +p P

0
2 ; T) j (P

0
1; r1) 2 ~P1 ^ (P 0

2; r2) 2 ~P2 jg

+
P
fj r1 � (1� q) � r3 � pass(P

0
1 +p P

0
3 ; T) j (P

0
1; r1) 2 ~P1 ^ (P 0

3; r3) 2 ~P3 jg

= pass(P1 +p (P2 �q P3) ; T)

Now we show soundness of (EBE). First we introduce some notation. Given
a probabilistic barb T , let ~T = ft1; : : : ; tug be the set of its initial actions.

61

Given a set of actions C � Act , the set fti j ti 2 C \ ~Tg is denoted by TC . Let
us consider the following processes:

P =
nX
i=1

[pi] ai;Pi Q =
mX
j=1

[qj] bj ;Qj R =
lX

k=1

[rk] ck;Rk

where for any 1 � k � l we have that rk; ck; and Rk are given in the presen-
tation of axiom (EBE). Let A = fa1; : : : ; ang and B = fb1; : : : ; bmg. In the
following, p(P; ai) stands for pi while p(Q; bj) stands for qj. Applying rules
(EXT4) and (EXT5) we have that P

a
�!q P

0 implies P +p Q
a
�!p�q P

0 and
Q

a
�!q P

0 implies P+pQ
a
�!(1�p)�q P

0. We will show that for any probabilistic
barb T 2 PB we have pass(P +p Q ; T) = pass(R ; T) .

If T is a probabilistic barb as T =
uX
i=1

[si] (ti;Nil) +s ! then we have

pass(P +p Q ; T) =

1�s

(1�s)+
X

ti2TA

s�si�p�p(P;ti) +
X

ti2TB

s�si�(1�p)�p(Q;ti)
=

1�s

(1�s)+
X

ti2TA�B

s�si�p�p(P;ti) +
X

ti2TB�A

s�si�(1�p)�p(Q;ti) +
X

ti2TA\B

s�si�(p�p(P;ti)+(1�p)�p(Q;ti))
=

pass(R ; T)

Let T be a probabilistic barb as T =
uX
i=1

[si] ti;Ti, where if i = u then Ti = T 0

and Ti = Nil otherwise. We distinguish four cases:

3 9 1 � i � n : ai = tu 2 A� B.

pass(P +p Q ; T) =

su�p�pi� pass(Pi ; T
0)X

ti2TA

si�p�p(P;ti) +
X

ti2TB

si�(1�p)�p(Q;ti)
=

su�p�pi� pass(Pi ; T
0)X

ti2TA�B

si�p�p(P;ti) +
X

ti2TB�A

si�(1�p)�p(Q;ti) +
X

ti2TA\B

si�(p�p(P;ti)+(1�p)�p(Q;ti))
=

pass(R ; T)

3 9 1 � j � m : bj = tu 2 B � A. Symmetrical to the previous case.

62

3 9 1 � i � n; 1 � j � m : ai = bj = tu 2 A \ B.

pass(P +p Q ; T) =

su�p�pi� pass(Pi ; T
0) +su�(1�p)�qj � pass(Qj ; T

0)X
ti2TA

si�p�p(P;ti) +
X

ti2TB

si�(1�p)�p(Q;ti)
=

su�(p�pi+(1�p)�qj)� pass(Pi� p�pi
p�pi+(1�p)�qj

Qj ; T
0)X

ti2TA�B

si�p�p(P;ti) +
X

ti2TB�A

si�(1�p)�p(Q;ti) +
X

ti2TA\B

si�(p�p(P;ti)+(1�p)�p(Q;ti))
=

pass(R ; T)

3 tu =2 A [B. In this case, pass(P +p Q ; T) = pass(R ; T) = 0.

Soundness of (IBE). Let us consider the following processes:

P =
nX
i=1

[pi] ai;Pi Q =
nX
i=1

[pi] ai;Qi R =
nX
i=1

[pi] ai; (Pi �p Qi)

Let A = fa1; : : : ; ang. We will show that for any probabilistic barb T we have
pass(P �p Q ; T) = pass(R ; T) . In the following, p(ai) stands for pi.

If T is a probabilistic barb as T =
uX
i=1

[si] (ti;Nil) +s ! then

pass(P �p Q ; T) = p � pass(P ; T) + (1� p) � pass(Q ; T)

=
p�(1�s)

(1�s)+
X

ti2TA

s�si�p(ti)
+

(1�p)�(1�s)

(1�s)+
X

ti2TA

s�si�p(ti)
=

(1�s)

(1�s)+
X

ti2TA

s�si�p(ti)

= pass(R ; T)

Let T be a probabilistic barb as T =
uX
i=1

[si] ti;Ti, where if i = u then Ti = T 0,

and Ti = Nil otherwise. We consider two cases:

3 9 1 � i � n : ai = tu.

pass(P �p Q ; T) = p � pass(P ; T) + (1� p) � pass(Q ; T)

=
p�su�pi� pass(Pi ; T

0)X
ti2TA

si�p(ti)
+

(1�p)�su�pi� pass(Qi ; T
0)X

ti2TA

si�p(ti)
=

su�pi� pass(Pi�pQi ; T
0)X

ti2TA

si�p(ti)

= pass(R ; T)

3 tu =2 A. In this case, pass(P �p Q ; T) = pass(R ; T) = 0.

63

Theorem 5.12 Let P 2 PPA�n . There exists a normal form N , such that
` P � N .

Proof: The proof will be done by structural induction. If P = Nil or P =

then P is already a normal form (just considering the normal forms corre-
sponding to the sets A = f;g and A = ;, respectively). If P = a;P 0 then by
induction hypothesis P 0 can be transformed into a normal form N 0. Consid-
ering A = ff(a; 1)gg, Na;A = N 0, and applying rule (C1) we obtain a normal
form N such that P � N .

If P = P1�p P2 then, by induction hypothesis, P1 and P2 can be transformed
into normal forms N1 and N2, respectively, such that P1 � N1 ^ P2 �

N2, where N1 =
M
A2A

[pA]
X

(a;pa)2A

[pa] a;Pa;A and N2 =
M
B2B

[qB]
X

(b;qb)2B

[qb] b;Qb;B.

Applying (C3) and (O1-2) we obtain P1�pP2 � N1�pN2. By applying (IBE),
if necessary, and given the fact that any generalized internal choice can be
decomposed into binary internal choices and vice versa, we obtain the normal

form N =
M
C2C

[rC]
X

(c;rc)2C

[rc] c;Rc;C, where C = A [B and for any C 2 C we

have three possibilities:

C = A 2 A� B) rC = p � pA ^ 8 c 2 C : Rc;C = Pc;A

C = B 2 B �A) rC = (1� p) � qB ^ 8 c 2 C : Rc;C = Qc;B

C = A = B 2 A \ B) rC = p � pA + (1� p) � qB ^

8 c 2 C : Rc;C = Pc;A � p�pA
rC

Qc;B

In the �rst two cases we obtain a normal form. In the third case we can
apply induction hypothesis to Pc;A and Qc;B. Consequently, we get a normal
form N such that N1 �p N2 � N . Finally, applying rules (O1-3), we obtain
P1 �p P2 � N .

If P = P1 +p P2 then, by induction hypothesis, we have P1 � N1 ^ P2 �

N2, where N1 =
M
A2A

[pA]
X

(a;pa)2A

[pa] a;Pa;A and N2 =
M
B2B

[qB]
X

(b;qb)2B

[qb] b;Qb;B.

Applying rules (C3) and (O1-2) we obtain P1 +p P2 � N1 +p N2. Then,
applying reiteratively (DEIG), we obtain

P 0 =
M
A 2 A
B 2 B

[pA � qB]

0@(X
(a;pa)2A

[pa] a;Pa;A) +p (
X

(b;qb)2B

[qb] b;Qb;B)

1A

Let us study the processes (
X

(a;pa)2A

[pa] a;Pa;A) +p (
X

(b;qb)2B

[qb] b;Qb;B). If ei-

ther A or B is empty then, applying axiom (NE), we obtain the other pro-
cess. If both are non-empty then, applying axiom (EBE), we obtain that

64

the previous process is equivalent to RA;B =
X

(c;rc)2C

[rc] c;Rc;A;B, where C =

f(c1; r1); : : : ; (cl; rl) j 9 q : (ci; q) 2 A [Bg and

rc =

8>>>><>>>>:
p � q if 9 q : (c; q) 2 A ^ 6 9 r : (c; r) 2 B

(1� p) � q if 9 q : (c; q) 2 B ^ 6 9 r : (c; r) 2 A

p � p1 + (1� p) � p2 if 9 p1; p2 : (c; p1) 2 A ^ (c; p2) 2 B

Rc;A;B =

8>>>><>>>>:
Pc;A if 9 q : (c; q) 2 A ^ 6 9 r : (c; r) 2 B

Qc;B if 9 q : (c; q) 2 B ^ 6 9 r : (c; r) 2 A

Pc;A � p�p1
p�p1+(1�p)�p2

Qc;B if 9 p1; p2 : (c; p1) 2 A ^ (c; p2) 2 B

As for the internal choice case, the processes Rc;A;B are either a normal form,
in the �rst two cases, or they can be transformed into a normal form by
applying induction hypothesis. But the new process is not yet (necessarily) a
normal form, because if we consider the processes appearing when composing
two generalized external choices by an external choice, we can generate in
di�erent ways the set C associated with the process R. That is, given a set C,
there can exist several A 2 A and B 2 B such that their combination produces
the same set C. In that case, we must join all the generalized external choices
having associated with them the same states. The probabilities associated
with the actions of the new generalized external choices are computed from
the ones in the original sets, by using the function [p given in De�nition 4.4,
so that applying axiom (IBE) we obtain

P 00 =
M
C2C

[rC]
X

(c;rc)2C

[rc] c; (
M

A 2 A; B 2 B
C = A [p B

�
pA � qB
rC

�
Rc;A;B)

where C = fA [p B j A 2 A ^ B 2 Bg, the processes Rc;A;B are de�ned as
before, and rC =

P
fj pA � qB j 9 A 2 A; B 2 B : A [p B = C jg. Finally, by

induction hypothesis, processes as

M
A 2 A; B 2 B
C = A [p B

�
pA � qB
rC

�
Rc;A;B

can be transformed into a normal form, obtaining from P 00 a process P 000 such
that, applying rules (O1-3), we conclude P1+pP2 � P 000, where P 000 is already
a normal form.

Lemma 5.13 Let P;Q 2 PPA�n . Then, [[P]] vPAT [[Q]] implies P v Q.

65

Proof: Theorem 5.12 states that P and Q can be transformed into normal
forms. Thus, we can restrict ourselves to the study of equivalent normal forms.
Let us consider P and Q as:

P =
M
A2A

[pA]
X

(a;pa)2A

[pa] a;Pa;A Q =
M
B2B

[qB]
X

(b;qb)2B

[qb] b;Qb;B

where A;B � P(��(0; 1]). Note that p(P; �; A) = pA and p(Q; �; B) = qB. We
will do the proof by structural induction on the complexity of the processes.
By complexity we mean the depth of processes, and if two processes have the
same depth, we consider that a process is more complex than another one, if
the reachable states of the latter are contained in the ones of the former. We
can suppose P 6=
 because if P =
 then the result is immediate (applying
axiom (D)). We have three possibilities:

� The sets A and B di�erent.

We assume [[P]] vPAT [[Q]]. This implies A � B. So, there exists a state B0 such
that B0 2 B�A (because A and B are di�erent). Moreover, the rest of states
belonging to B must have a probability associated with them in the process Q
greater than or equal to the corresponding to P . In particular, we have that
the probability of P diverging in its �rst step is greater than or equal to qB0 ,
because X

A2A

pA �
X
A2A

qA <
X
A2A

qA + qB0 �
X
B2B

qB � 1

We can rewrite, using axiom (AI), P and Q as:

P �

0@M
A2A

[pA
1�qB0

]
X

(a;pa)2A

[pa] a;Pa;A

1A �1�qB0

Q �

0@ M
B2B�B0

[qB
1�qB0

]
X

(b;qb)2B

[qb] b;Qb;B

1A �1�qB0

0@ X
(b0;qb0)2B

0

[qb0] b
0;Qb0;B0

1A
By applying axiom (D), we have
 v

X
(b0;qb0)2B

[qb0] b
0;Qb0;B0. Again, because

[[P]] vPAT [[Q]], we obtain

[[
M
A2A

�
pA

1� qB0

� X
(a;pa)2A

[pa] a;Pa;A]] vPAT [[
M

B2B�B0

�
qB

1� qB0

� X
(b;qb)2B

[qb] b;Qb;B]]

and by induction hypothesis, because the states of the right hand side process
are contained in those of Q, we haveM

A2A

�
pA

1� qB0

� X
(a;pa)2A

[pa] a;Pa;A v
M

B2B�B0

�
qB

1� qB0

� X
(b;qb)2B

[qb] b;Qb;B

so that applying rule (C3) we �nally obtain P v Q.

66

� A = B and 9 C : pC 6= qC .

Assuming [[P]] vPAT [[Q]] we have pA � qA, for any A 2 A. This implies
pC < qC . Performing a distinction similar to the previous case, we can rewrite
our processes as:

P �(
M

A2A�C

[pA
1�qC

]
X

(a;pa)2A

[pa] a;Pa;A)�1�qC ((
X

(c;pc)2C

[pc] c;Pc;C)� pC
qC

)

Q�(
M

A2A�C

[qA
1�qC

]
X

(a;pa)2A

[pa] a;Qa;A)�1�qC ((
X

(c;pc)2C

[pc] c;Qc;C)� pC
qC

(
X

(c;pc)2C

[pc] c;Qc;C))

Note that by using rules (OI1), (OI2), and (O1) we can infer

` (
X

(c;pc)2C

[pc] c;Qc;C)� pC
qC

(
X

(c;pc)2C

[pc] c;Qc;C) � (
X

(c;pc)2C

[pc] c;Qc;C)

Applying axiom (D) we have
 v
X

(c;pc)2C

[pc] c;Qc;C and given the fact that

[[P]] vPAT [[Q]] we obtain [[
X

(c;pc)2C

[pc] c;Pc;C]] vPAT [[
X

(c;pc)2C

[pc] c;Qc;C]]. So,

applying induction hypothesis, we getX
(c;pc)2C

[pc] c;Pc;C v
X

(c;pc)2C

[pc] c;Qc;C

and applying rule (C3) we obtain

X
(c;pc)2C

[pc] c;Pc;C � pC
qC

 v
X

(c;pc)2C

[pc] c;Qc;C � pC
qC

X
(c;pc)2C

[pc] c;Qc;C

Once again, given the fact that [[P]] vPAT [[Q]], we have

[[
M

A2A�C

[
pA

1� qC
]
X

(a;pa)2A

[pa] a;Pa;A]] vPAT [[
M

A2A�C

[
qA

1� qC
]
X

(a;pa)2A

[pa] a;Qa;A]]

and applying induction hypothesisM
A2A�C

[
pA

1� qC
]
X

(a;pa)2A

[pa] a;Pa;A v
M

A2A�C

[
qA

1� qC
]
X

(a;pa)2A

[pa] a;Qa;A

Finally, applying rule (C3) to the previous results, we obtain P v Q.

�A = B and 8 C 2 A : pC = qC .

We assume [[P]] vPAT [[Q]]. Then, for any A 2 A and (a; pa) 2 A we have
[[Pa;A]] vPAT [[Qa;A]]. So, applying induction hypothesis, we obtain Pa;A v Qa;A.
Then, applying axiom (C1), we have a;Pa;A v a;Qa;A, for any action a and
state A. So, applying reiteratively axiom (C2), for any A we have

67

X
(a;pa)2A

[pa] a;Pa;A v
X

(a;pa)2A

[pa] a;Qa;A

Finally, if we reiteratively apply axiom (C3) we obtain the desired result

P =
M
A2A

[pA]
X

(a;pa)2A

[pa] a;Pa;A v
M
A2A

[pA]
X

(a;pa)2A

[pa] a;Qa;A = Q

Lemma 5.21 Let P 2 PPA be a �nite process and Q 2 PPA be a recursive
one. Then, [[P]] vPAT [[Q]] =) P v Q.

Proof: Suppose [[P]] vPAT [[Q]] = t[[Qn]]. If there exists m 2 IN such that
[[P]] vPAT [[Qm]] then the proof can be done as indicated after the presentation
of Lemma 5.19 in the body of the paper.

Let us suppose that there does not exist such an m. For any sequence s
and state A we have p([[P]]; s; A) � p([[Q]]; s; A) = limn p([[Q

n]]; s; A). Let us
consider those sequences s and those states A such that p([[P]]; s; A) > 0.
We have (1 � 1

k
) � p([[P]]; s; A) < limn p([[Q

n]]; s; A), for any k > 0. Note that
(1� 1

k
) � p([[P]]; s; A) = p([[P �1� 1

k

]]; s; A). Given the fact that P is �nite, we

have that the set of pairs (s; A) such that p([[P]]; s; A) > 0 is �nite. So, for each
k 2 IN there exists nk 2 IN such that p([[P �1� 1

k

]]; s; A) � p([[Qnk]]; s; A), for

any sequence s and state A such that p([[P]]; s; A) > 0. If p([[P]]; s0; A0) = 0
then the previous result also holds, so that we have [[P �1� 1

k

]] vPAT [[Qnk]].

Given the fact that the processes P �1� 1
k

 and Qnk are �nite, we can apply

Lemma 5.13. So, P �1� 1
k

 v Qnk , for any k 2 IN. Considering that for any

n 2 IN we have Qn v Q, we deduce P �1� 1
k

 v Q for any k 2 IN. Finally,

applying rule (R3), we obtain P v Q.

Proposition 6.5 The axiom (EP) is sound.

Proof: First we introduce some additional notation. For a probabilistic barb
T , let ~T = ft1; : : : ; tug be the set of its initial actions. Given a set of actions
C � Act , the set fti j ti 2 C \ ~Tg is denoted by TC . Finally, we consider
pi = p(P; ai) and qj = p(Q; bj).

Let us note that if a =2 X then we have both that P
a
�!q P 0 implies

P kpX Q
a
�!p1 P 0 kpX Q and that Q

a
�!q Q

0 implies P kpX Q
a
�!p2 P kpX Q0,

where p1 =
p�q

�(P;Q;X;p)
and p2 =

(1�p)�q
�(P;Q;X;p)

. Besides, if a 2 X then we have that

P
a
�!p1 P

0 ^ Q
a
�!p2 Q

0 implies P kpX Q
a
�! p1�p2

�(P;Q;X;p)
P 0 kpX Q0.

We will prove that pass(P kpX Q ; T) = pass(R ; T) for any T 2 PB.

68

If T is a probabilistic barb as T =
uX
i=1

[si] (ti;Nil) +s ! then we deduce

pass(P kpX Q ; T) =

1�s

(1�s)+
X

ti2TA�X

s�si�
p�p(P;ti)

�(P;Q;X;p) +
X

ti2TB�X

s�si�
(1�p)�p(Q;ti)
�(P;Q;X;p) +s�RA\B\X

=

1�s

(1�s)+
X

ti2T(A�B)�X

s�si�
p�p(P;ti)

�(P;Q;X;p) +
X

ti2T(B�A)�X

s�si�
(1�p)�p(Q;ti)
�(P;Q;X;p) +s�R(A\B)�X+s�RA\B\X

=

pass(R ; T)

where we have considered that R(A\B)�X =
X

ti2T(A\B)�X

si �
(p�p(P;ti)+(1�p)�p(Q;ti))

�(P;Q;X;p)
and

RA\B\X =
X

ti2TA\B\X

si �
p(P;ti)�p(Q;ti)
�(P;Q;X;p)

Let T be a probabilistic barb as T =
uX
i=1

[si] ti;Ti, where if i = u then Ti = T 0,

and Ti = Nil otherwise. We must consider several cases depending on the
di�erent sets of actions to which tu may belong:

3 9 1 � i � n : ai = tu 2 (A� B)�X.

pass(P kpX Q ; T) =

su�
p�pi

�(P;Q;X;p) � pass(Pi k
p
X Q ; T 0)X

ti2TA�X

si�
p�p(P;ti)

�(P;Q;X;p) +
X

ti2TB�X

si�
(1�p)�p(Q;ti)
�(P;Q;X;p) +RA\B\X

=

su�
p�pi

�(P;Q;X;p) � pass(Pi k
p
X Q ; T 0)X

ti2T(A�B)�X

si�
p�p(P;ti)

�(P;Q;X;p) +
X

ti2T(B�A)�X

si�
(1�p)�p(Q;ti)
�(P;Q;X;p) +R(A\B)�X+RA\B\X

=

pass(R ; T)

3 9 1 � j � m : bj = tu 2 (B � A)�X. Symmetrical to the previous case.

69

3 9 1 � i � n; 1 � j � m : ai = bj = tu 2 (A \ B)�X.

pass(P kpX Q ; T) =

su�
p�pi

�(P;Q;X;p) � pass(Pi k
p
X Q ; T 0) +su�

(1�p)�qj
�(P;Q;X;p) � pass(P kpX Qj ; T

0)X
ti2TA�X

si�
p�p(P;ti)

�(P;Q;X;p) +
X

ti2TB�X

si�
(1�p)�p(Q;ti)
�(P;Q;X;p) +RA\B\X

=

su�
p�pi+(1�p)�qj
�(P;Q;X;p) � pass((Pi k

p
X Q)�q0(P kpX Qj) ; T

0)X
ti2T(A�B)�X

si�
p�p(P;ti)

�(P;Q;X;p) +
X

ti2T(B�A)�X

si�
(1�p)�p(Q;ti)
�(P;Q;X;p) +R(A\B)�X+RA\B\X

=

pass(R ; T)

where q0 = p�pi
p�pi+(1�p)�qj

.

3 9 1 � i � n; 1 � j � m : ai = bj = tu 2 A \ B \X.

pass(P kpX Q ; T) =

su�
pi�qj

�(P;Q;X;p) � pass(Pi k
p
X Qj ; T

0)X
ti2TA�X

si�
p�p(P;ti)

�(P;Q;X;p) +
X

ti2TB�X

si�
(1�p)�p(Q;ti)
�(P;Q;X;p) +RA\B\X

=

su�
pi�qj

�(P;Q;X;p) � pass(Pi k
p
X Qj ; T

0)X
ti2T(A�B)�X

si�
p�p(P;ti)

�(P;Q;X;p) +
X

ti2T(B�A)�X

si�
(1�p)�p(Q;ti)
�(P;Q;X;p) +R(A\B)�X+RA\B\X

=

pass(R ; T)

3 tu =2 ((A [B)�X) [(A \ B \X). In this case, pass(P kpA Q ; T) = 0 =
pass(R ; T) .

70

