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Abstract. In this paper we present a sound and complete axiom sys-
tem for a probabilistic process algebra with recursion. Soundness and
completeness of the axiomatization is given with respect to the testing
semantics defined in [19].

1 Introduction

During this decade researchers in process algebras have tried to close the gap
between formal models and real systems. In particular, features which were ab-
stracted before have been introduced in these models. This is the case of prob-
abilistic information. Several models have introduced probabilities into process
algebras, and in [22] models are classified with respect to the interpretation of
probabilities in three groups: reactive, generative, and stratified. In the reactive
model there is a different probability distribution for every action, that is, there is
no probabilistic relation between different actions. In the generative model there
is one probability distribution for all the actions. The stratified model is similar
to the generative model but taking into account the probabilistic branching. We
will try to explain the differences among these models by means of a few simple
examples. Consider the (reactive) process P = (a; P; +10; Py)+ (b; Q1 +1 b; Q2).
If the environment offers a then P will execute a and then it will behave as either
Py or P, with probabilities  and 2, respectively. Something similar happens if
the environment offers the action b. Nevertheless, it is not specified how this
process would behave if both actions were offered simultaneously. Consider the
(generative) process P’ = (a; Py +1b; P). If the environment offers a then P’ will
execute a with a probability 1 and then it will behave as Py; if the environment
offers b then P’ will execute b with a probability 1 and then it will behave as P;
if the environment offers both a and b then P’ will execute a, with a probability
%, or it will execute b, with a probability 3 2. Finally, the processes (a +1 b) +ze
and a+1 (b+1 1 ¢) are equivalent in the generatlve model but they are not in the
stratlﬁeg{ one. Tn this paper we consider a generative interpretation of probabil-
ities based on the following approach: it allows to specify probabilistic systems
more precisely that the reactive interpretation, while the (semantic) models are
not so complicated as the ones based on the stratified interpretation.
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Regarding the testing framework, there have been several proposals for prob-
abilistic extensions (e.g. [3,5,23,19,18,4,10,11]). In this paper we will consider
an extension of the language PPA described in [19]. PPA is a probabilistic pro-
cess algebra featuring two (probabilistic) choice operators: external and internal.
Sometimes it has been argued that the external choice operator should not be
extended with a probability, and in fact there are proposals featuring a proba-
bilistic internal choice while the external choice operator does not have a prob-
ability parameter (e.g. [23]). Instead, we consider useful to have probabilities in
both operators for a number of reasons. First, in order to have the same expres-
sive power with our language as with a CCS-like language! we need to include
probabilities in both operators. For example, we could not simulate the simple
(generative) process a +p b which relate a and b probabilistically, with a non-
probabilistic external choice. Second, by working with two choice operators we
automatically get that the testing equivalence is a congruence, and so we can
axiomatize it (working with a CCS-like operator we need, as usual, to consider
the largest congruence contained in the testing equivalence). Finally, there are
behaviors which can be specified more precisely by using a probabilistic external
choice operator. We will illustrate this by means of a simple example. Suppose
that we want to specify the behavior of a library where two users can request
books. If only one user requests a book then the book is given to him, but if both
users request the same book the library must give priority to one of the users. On
the other hand, the system must be somehow fair, avoiding the possibility that
if the two users request the same book, this book is always given to the same
person. A simplified version of the system can be specified as P = a; P +1 b; P,
indicating that if both users request the same book, it will be given with a prob-
ability % to the user a and with a probability % to the user b. Note that if we use
a probabilistic internal choice then there is no guarantee that if only one user
requests the book, it is given to him, while if we use a nonprobabilistic external
choice then we cannot specify the notion of priority.

An interesting alternative appears in [16] where the probabilistic external
choice operator is considered as an operator derived from the probabilistic inter-
nal choice and the priority operators. Nevertheless it is also necessary to include
some kind of probability (the extremal value 1) in the external choice operator.

Besides, PPA allows the definition of recursive processes. Moreover, in this
paper we extend the language described in [19] with a parallel operator. Our
parallel operator is parameterized by a set of actions (the synchronization set).
Regarding probability parameters, no agreement has been reached about the
parallel operator (see [7] for a discussion on the different possibilities). There are
proposals with a probability parameter which assigns weights to the interleaving
actions of both components (e.g. [6, 18]); alternatively, there are proposals adding
two probability parameters assigning weights to the interleaving actions with
respect to the synchronization actions, and assigning weights to the interleaving
actions of both components, respectively (e.g. [1]). In any case, we claim that

1 Actually, most of probabilistic models are based on CCS, or in labeled transition
systems (which can be easily interpreted as CCS processes).



these parameters only change the probability with which actions are executed,
while the operational behavior remains the same. Taking this into account, and
for the sake of simplicity, in this paper we consider a parallel operator without
any probability parameter, but other alternatives can be easily included in our
framework (they are discussed in [17]).

The main goal of this paper is to provide a complete and sound axiomati-
zation of testing equivalence for PPA. In [19] a probabilistic extension of the
classical testing semantics [8,12] was defined. Besides, an alternative character-
ization of the testing semantics (based on an extension of acceptance sets) as
well as a fully abstract denotational semantics (based on acceptance trees) were
given. So in order to conclude the semantic trilogy (alternative characterization,
denotational semantics, and axiomatic semantics), a suitable axiomatization of
the probabilistic testing semantics should be defined. The starting point for the
definition of this axiomatization is (as it was for the other semantics) [12]. As
it will be shown in this paper, some of the axioms are (more or less compli-
cated) probabilistic versions of the axioms corresponding to the nonprobabilistic
case, while we must add new axioms in order to cope with the specific problems
introduced by probabilities.

There have been previous proposals for probabilistic axiom systems. For ex-
ample, using Synchronous PCCS and generative probabilities [9,13,21], or with
reactive probabilities [15]. An axiomatization for a subset of PCCS is presented
in [20], and in [1] an axiomatization for ACP finite processes is given. These two
proposals also use generative probabilities. Nevertheless, there exists an impor-
tant difference between all these previous axiomatizations and ours: all of them
axiomatize (strong) probabilistic bisimulation, in which there is no abstraction of
internal movements (i.e. 7 actions, or equivalently internal transitions). In fact,
observational semantics cannot be directly translated from the nonprobabilistic
setting, and a suitable definition of probabilistic weak bisimulation for general
probabilistic systems was an open problem until [2]. The problem is that there
exists some kind of fairness in these semantics. Consider P = recX. (a; Nil)®, X
(or P = fiz X.(a; Nil) +, (7; X) using a CCS-like notation). If we forget prob-
abilities, P is must equivalent to divergence (because of the 7 loop), but in a
probabilistic setting we would expect that if the environment offers ¢ then P
would execute it with probability 1, and so, P should be (probabilistic) testing
equivalent to a; Nil. This example illustrates why the axiomatization of our test-
ing equivalence cannot be a simple adaptation of the one for nonprobabilistic
processes. We will need a rule to express that this kind of recursively defined
processes have the same meaning as a finite one (in the previous case, a; Nil).

The work presented in [6] is the most similar to ours. The main differences
between their work and ours are that while our testing semantics is defined
following the classical approach (i.e. parallel composition of tested process and
test), theirs is defined in an unusual (ad hoc) way; besides, they use a reactive
interpretation of probabilities (within a probabilistic external choice) which leads
to a simplification of the external choice treatment, but complicates the intuitive
interpretation of some processes.



As far as we know, the axiomatization presented in this paper is the first one
for a semantics abstracting internal movements (in this case a testing semantics),
where recursive processes are allowed and probabilites are interpreted using the
generative model.

The rest of the paper is structured as follows. In Section 2 we recall previous
results for our calculus. In Section 3 we present a sound and complete axiomati-
zation for finite processes without parallel composition. In Section 4 we consider
recursion, and the previous axiomatization is extended to deal with recursive
processes. In Section 5 we give axioms for the parallel operator, showing that
this operator can be considered as a derived one. Finally, in Section 6 we present,
our conclusions and a discussion about the inclusion of hiding in our language.

The full proofs of the results in this paper can be found in [17].

2 Preliminaries

In this section we review our previous results for PPA. The only difference be-
tween the language described in this paper and the one presented in [19] is that
here we have included a parallel operator. The composition of a process and a
test will be defined using the parallel operator of the language. Besides, negative
premises in our former operational semantics have been replaced by a syntactic
predicate stable, and a new function live. Anyway, the induced labeled transition
systems remains the same as previously.

Definition 1 Given a set of actions Act and a set of identifiers Id, the set of
PPA processes is defined by the BNF expression:

Pu= Nil|Q2|X|a;P|P®,P|P+,P|P|aP|recX.P
where p € (0,1), a € Act, A C Act, and X € Id. |

From now on, except if noted, we only consider closed processes, that is
processes without free occurrences of variables, and we will omit trailing occur-
rences of Nil. In this process algebra Nil is a deadlocked process, (2 is a divergent
process, a; P denotes the action a prefixing the process P, P &, ) denotes an
internal choice between P and @) with associated probability p, P +, @ is an
external choice between P and ) with associated probability p, P |4 @ is the
parallel composition of P and () with synchronization alphabet A, and finally
recX.P is used to define recursive processes.

Next, we give a syntactic definition for the stability of a process. It expresses
that a process has not unguarded internal choices, or equivalently that a process
will not be able to execute an internal transition. We also define a function live
computing whether a stable process is operationally equivalent to Nil.

Definition 2 We define the predicate stable(P) over PPA processes as:
— stable(Nil) = stable(a; P) = True
— stable(2) = stable(X) = stable(Py @, P2) = stable(recX.P) = False
— stable(Py +p P2) = stable(Py ||a Py) = stable(P1) A stable(Py)

We define the function live(P) over PPA processes as:
— live(Nil) =0
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Fig. 1. Operational Semantics of PPA.
— live(a; P) =1

— live(Py +p Py) = live(Py ||a P2) = max(live(Py), live(Pz)) .
Note that live(_) is not defined for non stable processes. The set of rules defining
the operational semantics is given in Figure 1. There are two types of transitions.
The intuitive meaning of an external transition P —, @ is that if the environ-
ment offers all the actions in Act, then the probability with which P executes a
and then behaves as () equals p; the meaning of an internal transition P >—, @
is that the process P evolves to () with probability p, without interaction with
the environment.

In order to avoid the problem of deriving the same transition in different
ways, we use multisets of transitions. For example, consider P = a +1a. If we

are not careful, we will have the transition P —— 1 Nil only once, while we
should have this transition twice (that is why we use multisets). This problem
is similar for the @, and ||4 operators. So, in our model, if a transition can be
derived in several ways, we consider that each derivation generates a different
instance. In particular, when we define the testing semantics we will consider
multisets of computations as well. Other approaches to solve this problem are to
index transitions (e.g. [9]), to increase the number of rules (e.g. [14]), to define a
transition probability function (e.g. [4, 20]), or to add the probabilities associated
with the same transition (e.g. [23]).

While the rules for prefix, internal choice, divergence and recursion do not
need any explanation, we will briefly explain the rest of the rules. (EXT1 — 3)
indicate that whenever any of the arguments of an external choice can evolve



via an internal transition, these transitions are performed until both arguments
become stable. (EXT4 — 5) are applied when both processes are stable and (at
least) one of them may execute some observable action. The value ¢ is obtained
by normalizing the probability ¢ of performing this external transition, taking
into account whether one or both processes can perform external transitions.
Example 1 Let P = (a; Nil) 4+, Nil. We have P —; Nil, while if we would
not use this normalization we would obtain P —, Nil. a

Rules (PAR1 — 3) are similar to (EXT'1 — 3). If none of the processes can
perform internal transitions, then rules (PAR4 —6) are applied. (PAR4—5) deal
with interleaving actions, while (PARG6) deals with synchronization actions. As
usual, in these last three rules we use a normalization factor, u(P, @, A), in order
to obtain that the sum of all the external transitions is 1 (or zero if no transition
is possible):

w(P,Q,A) :ZaeA{lp"HHP,:Q’: P, PAQ—,Q}
+ 3 ea P3P P, P+ Y, {a]3Q: Q20 Q')

As a consequence of this definition of operational semantics, we have that
internal and external transitions are not mixed, and then we have the following
Lemma 1 Let P be a process. If there exist p, P’ such that P >—, P’ then
there do not exist ¢,a, P’ such that P -, P", or equivalently if there exist
p,a, P' such that P -, P’ then there do not exist g, P"' such that P >—, P".

O

We finish this section generalizing the choice operators to deal with an arbi-
trary (finite) number of arguments. For the generalized external choice we will
use a restricted form, in which all the arguments are prefixed by different ac-
tions. These operators will be used, in particular, when we define the notion of
normal form.

Definition 3 Let Py, Ps,..., P, be processes, and ay,as,...,a, € Act different
actions. We inductively define the generalized external choice by

n—1

1 n
L. Z[I]QI;PI =a1; P 2. Z[Pi] ai; P = (a1; P1) 45, (Z[lpf;l]aiﬂ;PiH)
i=1 i=1

i=1

where p1,p2,...,pp > 0 are such that Y p; = 1.
We inductively define the generalized internal choice by

LPwir=02 2@ur=pr

3. Pl P=PEIPe, 2 fifp=Yp <1 An>0
i=1 i=1
n n—1

4. @[pl] P, = P, ®p, (@[f:ﬁl] Pi+1) [if Zpi =1 A n> 1]
i=1

i=1

where p1,pa,...,pp > 0 are such that > p; < 1. O



Let us remark that the sum of the probabilities associated with a generalized
internal choice may be less than 1. The difference between 1 and this value
indicates the probability of divergence. In this case the third clause is applied first
so that the sum of the probabilities associated with the remaining generalized
internal choice is equal to 1 (afterwards the second or the fourth clauses will
be used). We consider that the empty summation (i.e. Z?:1 P;) represents the
process Nil.

2.1 Testing Semantics

As in the nonprobabilistic case tests will be just processes where the alphabet
Act is extended with a new action w indicating successful termination. The
operational semantics of tests is the same as the one for processes (considering
w as an ordinary action). Now we have to define how a process interacts with
a test. As usual, this interaction is modeled by the parallel composition of the
process and the test. We will denote the composition of a process P and a test
T by P|T, and it is defined as P |T = P ||act T. Note that w is not included
in the synchronization alphabet. Now we will define a function computing the
probability with which a test is passed by a process.

Definition 4 Let Py be a process and T be a test. A computation is a sequence
of transitions C = Py | To —p, Po |Th —py - Poe1 | Tne1 —p, P | T~ -,
where —, denotes either >, , or -, for some a € Act U {w}. If C is finite
we say that length(C) = n.

Let C be a computation such that length(C) = n. We say that C'is successful
if Pooy | Tho i),, P, | T,, and there is no other occurrence of w in C, that is,
ﬁn, < napl : Pn’fl | Tn’fl iﬁ)’ Pn’ | Tn’-

We denote by C’p‘T the multiset of successful computations of P |T. We
define the probability of a successful computation S as Pr(S) = Hﬁi"lgth(s) pi.
Finally, we define the probability with which the process P passes the test T as
pass(P,T) = ZSeép‘T Pr(S).

Given two processes P and @, we say that they are testing equivalent, and
we write P & @, iff for all test T we have pass(P,T) = pass(Q,T). O

Note that pass(P,T) = lim, 0> {Pr(S)|S € C'p|T A length(S) < n]. Let us
remark that the role played by tests of the form a +, (7; w) in other models (e.g.
[5,24]) is played in our model by tests of the form a +,w, which are not trivially
passed within our framework. For example, the process P = a passes the test
above with a probability 1 — p.

In the following, we will show that the whole family of tests can be reduced
to a simpler class of tests. Although this fact is not important for the axiomatic
semantics, it strongly simplifies soundness proofs. First, we have that infinite
tests (i.e. tests having occurrences of recursion) are not necessary.

Lemma 2 P = @ iff for all finite test T we have pass(P,T) = pass(Q,T). O



Now we define a set of essential tests, called probabilistic barbs, with sufficient
discriminatory power to distinguish any pair of non-equivalent processes. These
probabilistic barbs are very similar to probabilistic traces [24] if we consider the
latter as probabilistic tests.

Definition 5 The set of probabilistic barbs, denoted by PB, is defined by means
of the following BNF expression:

. . : T ifi=s
T = Z[pl] (ai; Nil) +p w | Z[p,] ai; T; where T; = {N’il otherwise

i=1 i=1
where p € (0,1), Y pi =1, and a; € Act. O
Theorem 1 P ~ P' iff for all T € PB we have pass(P,T) = pass(P',T). |

In the rest of this paper, mainly in some of the proofs, we will use the de-
notational semantics for PPA given in [19]. Anyway, previous knowledge of this
semantics is not necessary in order to understand the bulk of this paper. In this
paper we use the following:

— The denotational semantics of a syntactic process P is denoted by [P].

— The semantic order relation and its induced equivalence are denoted by Cpar
and =par respectively.

— The probability with which a process P reaches a node labeled by the state A
of its semantic tree after a sequence s is denoted by p([P], s, A). In particular,
it P = P; &, P>, then p([P],s,4) =p-p([P1],s,A) + (1 —p) - p([P-], s, A4).

— The denotational semantics of recursive processes is given by their finite

approximations.
(Full Abstraction) Let P, Q be PPA processes. Then, P ~ Q iff [P] =par [Q]-

3 Axiomatization for Finite Processes

In this section we will define an axiom system inducing an equivalence relation,
denoted by =, among the terms of the language PPAﬁn which is the subset of
PPA where neither ||4 nor recX.P have been included. We will also use an
order relation C to define this equivalence relation. This system includes axioms
expressing algebraic properties of the operators as well as relations among the
operators like distributivity. We will also present some axioms which are sound in
the nonprobabilistic framework but not in our case. Soundness of rules (axioms)
dealing with = will be shown with respect to the testing equivalence, and we will
frequently use Theorem 1, while soundness of the ones corresponding to C will
be shown with respect to the fully abstract denotational semantics equivalence
defined in [19]. Although we will mix soundness (and completeness) proofs with
respect to either the testing or the denotational semantics, this process is correct.
First, we will prove [P] Cpar [Q] iff - P C Q. From this result, given that both
Cpar and C are preorders, we will trivially get [P] =par [@Q] iff F P =@ an so,
by full abstraction, we finally obtain the desired result P ~ Q iff H P = Q.



The first axioms of our system are similar to those in [12], and they express
that internal choice is idempotent, commutative and associative, while external
choice is commutative and Nil is its identity element. Commutativity and asso-
ciativity are intended up to a suitable rebalance of probabilities. Soundness is
trivial.

(II) Pe, P=P (CH)P®,Q=Q®: , P
(AI) P, (Q®q R)=(P @y Q) &y R, whereq' =p+q—p-qandp' =%
(CE)P+,Q=Q+1_, P (NE) P+, Nil= P

Now, we present some azxioms that are not sound in our probabilistic model,
although they were in nonprobabilistic testing models. First, in general, the
external choice operator is not idempotent as the following example shows:

Example 2 Consider the processes P = a D1 band P' = P +1 P, and the test
T = a;w. We have pass(P,T) = % while pass(P',T) = %. O

This fact also appears in models dealing with replication where the choice
between the same process is not equivalent to the original process. On the other
hand we have the following:

Proposition 1 Let P be a stable process. Then, for any p € (0,1) we have
P = (P+,P). a

Moreover, associativity of the external choice does not hold, even if we in-
troduce a rebalance of probabilities similar to that used in axiom (AI).

Example 3 Consider P = a 4+, (b +3 Nil) and P'=(a +2 b) +2 Nil, and let
T = a;w +1 b; Nil. We have pass(P,T) = %, but pass(P',T) = % This is so
because P &~ (a +3 b) while P’ ~ (a +2 b), and obviously (a +1 b) # (a +2 b).

a

This lack of associativity could create problems when trying to define normal
forms, but fortunately non-associativity only appears in the presence of Nil.
We can easily solve the problem since, by axiom (NE), we can remove all the
occurrences of the process Nil in external choices. In short, we have a restricted
form of associativity that will be enough in order to transform any finite process
into normal form.

Proposition 2 Let P, P>, P; be processes such that for all i we have P, —,
that is, stable processes which are not operationally equivalent to Nil. Then,
P+ (P2 +¢ P3) = (P1 +y P2) +¢ P, where ¢’ =p+g¢—p-qandp' = 5. O

Next we will introduce axioms dealing with divergence. Soundness proofs
with respect to Cpar are again trivial.

(D) RCP (DI) P®, RC P (DE) P+, 2=0



Note that, in contrast with the nonprobabilistic case, P ®, {2 £f2. For exam-
ple, consider P = a; Nil, and T = a;w. We have pass(P @, 2,T) = p, while
pass(2,T) = 0.

Now, we will consider the distributive laws between the external and the
internal choice operators. The soundness of the following axiom is easy to prove:

(DEI) P14y (P2 ®q Ps) = (P1 +p P2) ®q (P14 Ps)

The previous axiom can be generalized to deal with generalized internal
choices:

(DEIG) P+, ((PIpi] P) = Plpil (P +, P)

i=1
On the contrary, the converse distributivity does not hold in general. This is
illustrated by the following example.

Example 4 Let P = a®; (b+;1c) and Q = (a @1 b) +;1 (a @1 ¢). We have
3

pass(P, a;w) = % while pass(Q,a;w) = 2. a

=

As in the nonprobabilistic case, in order to prove the completeness of the
logic system we will introduce the adequate notion of normal form. Given that
in our normal forms we will have generalized external choices instead of binary
ones, we need an axiom for composing two generalized external choices by a
binary external choice, called (EBE), and one for composing two generalized
external choices having the same associated actions and the same probabilities
by an internal choice, called (IBE).

Let A = {a1,...,a,} C Act and B = {by,...,b,,} C Act. Let us consider the

processes P = Z[pl] a;; Py and QQ = Z[qj] b;; Q;. Then, the following axiom is
i=1 j=1
sound:
(EBE) P+, Q=R
l
where R = Z[rk] ck; R, C={c1,...,q} =AUB , and

k=1
p-pi if ¢, =a;, € A—B
T = (1-p)-qj if c,=bj€eB-A
p-pi+(1—p)~qj if Ckzai:bjEAﬂB
P; if ¢, =a;, € A—B
Ry, = Q; if c,=be€B—-A

PiGBPIQj if ¢, =a;=bj € ANB A p,:Wpip)-qj

Let {(a1,p1),(a2,p2),...,(an,pn)} be a non empty state. Then the following
axiom is sound:

(IBE) () _[pil as; i) @5 Y _[pil ai; Qi = Y _[pil ai; (P @, Qi)

i=1 i=1



Next we present the soundness proof of the axiom EBE (the proof of IBE
is easier). First, we give an auxiliary definition.

Definition 6 Let T'= Y., [s;] (t;; Nil) +5w | Y./~ [si] ti;T; be a probabilistic
barb. We define its set of initial actions, denoted by T, as T = {t1, - tu}
Given a set of actions C' C Act, we define the set T as Te = {t; | t; € CNT}.

O

Lemma 3 The axiom (EBE) is sound.

Proof. In order to clarify the notation, p(P,a;) stands for p; and p(Q, b;) stands
for ¢;. Note that applying the rules (EXT4) and (EXT5) we have P -, P’
implies P+, Q —,., P' and Q =, P’ implies P +, Q —(1_p)., P'. We will
show that for any T € PB we have pass(P +, Q,T) = pass(R, T).

u

If T is a probabilistic barb of the form T = Z[Sl] (t;; Nil) +5 w, then
pass(P +, Q,T) = =

— 1—s
(=t D ssipp(Pte) + 3 sai(1-p)p(@0k0)

t; €Ty t;€Tp N
j— —S8

(I—s)+ Z s:s;p-p(Pot;) + Z s-s;-(1=p)p(Q,t;) + Z s-s;+(p'p(Pst;)+(1—p)p(Q,t;))
t;€Ta—B ti€TB—a ti€TANB

= pass(R,T)

U
Let T = Z[Sl] t;; T; be a probabilistic barb such that if ¢ = u then T; = T" for
i=1
some probabilistic barb T”, while T; = Nil otherwise, we distinguish four cases:
1.31<i<n:a;=t, € A—B
2.31<j<m:b=t,eB—A
3.31<i<n, 1<j<m:a;=bj=t, € ANB
4.t, ¢ AUB.

In the last case we trivially get pass(P +, Q,T) = pass(R,T) = 0. The proof
for the first three cases is very similar, so we present, as an example, the proof
for the third case:

pass(P +, Q,T)
_ suppipass(Pi, T )+sy - (1-p)-g; pass(Q;,T)
D sipaPid + Y s p(@it)
t; €Ty t;€Tp
sus(ppi+(1=p)g;)pass(Pi®, Q;, T
D sirnin + Y s (opp@t) £ Y s p(Pt) (1) p(@)t)
t;€Ta—B ti€TB—a ti€TANB

= pass(R,T), where ¢' = ijp)_qi
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Fig. 2. Inference Rules.

In addition to the previous axioms, we need a set of rules indicating that the
relation = fulfills some good properties. The inference rules of our logic system
are given in Figure 2. Rules (O1-3) indicate that C is an order relation. Rules
(C1-3) say that C is a precongruence with respect to the basic operators of the
language. (RE) says that = is reflexive. Finally, (OI1-2) indicate that internal
choice occupies an intermediate position between the corresponding processes.
Soundness of (01-3), (C1-3), and (RE) rules is trivial with respect to Cpar,
given that the latter is defined compositionally, while the soundness of (OI1-2)
can be easily shown with respect to Cpar.

Definition 7 Given two processes P and @), we write - PCQ (resp. F P=Q)
if PCQ (resp. P=Q) can be derived from the axioms given before and the rules
given in Figure 2. a

Given that the previous axioms and rules are sound, we automatically get

Theorem 2 (Soundness for PPAg, )
For any P, @) € PPAﬁn we have + P C @ implies [P] Cpar [Q]. As a corollary,

we also have + P = (@ implies [P] =ear [Q], and by using full abstraction of
=PAT) FP= Q 1mphes P~ Q 0

This result indicates that if we can derive the equivalence between two finite
processes from the axiom system, then these two processes are testing equiva-
lent. In the remainder of the section we will prove that our axiomatization is
also complete, that is, if two finite processes are testing equivalent, then the
equivalence of these processes with respect to = can be derived from the given
axiomatization.

In order to simplify the completeness proof we will use a notion of normal
form, and we will prove that every PPAﬁn process can be transformed into a
normal form by applying the axioms and rules of our axiom system. Our normal
forms are similar to those in [12], that is, they will be generalized internal choices
of generalized external choices. The actions associated with the generalized ex-
ternal choices prefiz normal forms, so that normal forms will be processes which
have a strict alternation between generalized internal choices and generalized
external choices. Moreover, we will not allow two generalized external choices
associated with the same internal choice to have the same set of actions and the



same probability distribution associated with them. Actually, our normal forms
are the syntactic expression of the semantic processes described in [19].

Definition 8 Normal Forms are those PPA g, processes defined by means of
the following BNF expression: =

i
N =D il Y _lpilaii; N
i=1 j=1
where n >0, > p; <1, and
eV1<i<n:pi>0Ar;>0,andif r; > 0then Z;i:lpi,]-:1/\V1§j§ri:pi,j>0
oV1<i<n:VI<EkI<ri,k#l:air+#aiy
o V1<u,v<nu#v:{(au;pu;)}it # {(av; o)}, o

Note that, in contrast with [12], we do not force the continuations after the
same action in different states to be equal. We will use the following alternative
notation for normal forms:

N = @[]DA] Z [Pa] a; No,a

AEA  (a,pa)EA
where A is a finite subset of P(Act x (0,1]) such that for all A € A, if A # 0
then > { pa | (a,pa) € A} = 1. The next result states that any PPA g, process
can be transformed into a normal form by using the axiom system.

Theorem 3 Given P € PPAﬁn, there exists a normal form NV such that - P=N.

Proof. The proof is done by structural induction, and we only present the case
for internal choice. The proof for Nil, (2, and prefix is trivial, while the proof
for external choice is similar to the one for internal choice.

If P = P, ®, P>, then by induction hypothesis P, and P> can be transformed
into normal forms N; and N» respectively, such that P, =N, and P, =N, where

N, = @[I)A] Z [Pa] a; Pa,a and Ny = @[qB] Z (2] b; Qv, B

A€EA (a,pa)EA BeB (b,gp)EB

Applying the rules (C3) and (01-2) we obtain P, ®, P» = N1 &, N2. Now,
applying the axiom (IBE), if necessary, and given that any generalized internal
choice can be decomposed into binary internal choices and vice versa, we obtain

the normal form
N=lrcl Y [rleRec

cecC (e,re)EC
where C = AU B and for any C' € C we have three possibilities:

C=AceA-B = rc=p-pa ANVc€C: Rec =P a
C=BeB-A = rc=1—-p)-gp ANVc€C: Reoc =Qc,B
C=A=BeANB=> T'o:p-pA-l-(l—p)-qB AVc€eC:Rec=P.a®rra Qc,B
el

In the first two cases we obtain that R, are already normal forms, while
in the last case we can apply the induction hypothesis to the corresponding
processes P. 4 and Q. g in order to get a normal form. Therefore, we have got
a normal form N such that Ny @&, N» = N, and so, applying the rules (01-3),
we obtain P, @, P, = N. m|



Next we present a result stating that if two (semantic) processes are related
by Cpar, then the corresponding syntactic processes are also related by C.

Lemma 4 Let P,QQ € PPAﬁn. Then, [P] Cpar [Q] implies P C Q.

Proof. By Theorem 3, P and ) can be transformed into normal forms by using
the axiom system. So we can restrict ourselves to the study of the equivalent
normal forms. Let us take
P=Plpal > belaPosa and  Q=Plas] Y @lbiQus
AeA (a,pa)€A BeB (b,qp)EB

where A,B C P(X x (0,1]). Note that p(P,e, A) = pa and p(Q,€e,B) = ¢p.
The proof is done by using structural induction over the complezity of processes.
By complexity we mean the depth of processes, that is, the maximum number
of times that a generalized internal choice (followed by a generalized external
choice) appears in a row. If two processes have the same depth, we consider that
a process is more complex than another one if the reachable states of the latter
are contained in the ones of the former. We have three possibilities:

e A and B are different e A=Band AC :pc #qc e A=BandVC € A:pc = qc

We present the proof only for the first case. So we suppose that A4 # B. Given
that [P] Cpar [@Q], there exists a state B’ such that B" € B — A. Moreover, the
probability in @ of any state belonging to B must be greater than or equal to
the corresponding one in P. Moreover, since [P]Cpar [@], we have A C B. Then

we have ZPASZQA<ZQA+QB’SZ(1351

AcA AcA AcA BeB
and so the probability of P diverging in its first step is greater than or equal to
gp'- Now, using the axiom (AI), we can rewrite P and @ as:

P={@ 1241 Y bdaPua| &g, 2
A€A (a,pa)EA
Q = @ [l—quB/ ] Z [qb] ba Qb,B @l—qB, Z [Qb’] b’, Qb’,B’
BeB-B' (b,qp)EB b \qyr )EB!
Applying axiom (D), we have
2C Z (2] b’;Qb’,B’ (1)
(b',qy1 YEB

Given that [P] Cear [Q], we obtain

[[@[1523,] Z [pa] aipa,A]l EPAT[[ @ [1—qu]B’] Z [qb]b;Qb’B]]

A€A (a,pa)EA BeB-B' (b,qp)EB

and applying the induction hypothesis, given that the states of the right hand
side process are contained in those of the process (), we have

A B
Dl > klahat D -] Y wib@s @)
AcA B aparea BeB—B' B hapreB

Then applying the rule (C3) to equations (1) and (2) we conclude PC Q. O




By using the equivalence between =p,r and =&, and this result we obtain

Theorem 4 (Completeness for PPAﬁn )
For any processes P,(Q € PPAﬁn we have P ~ (Q implies - P = Q. O

4 Extension of the System to Infinite Processes

In this section we extend the previous results to deal with recursion, adding to
PPAﬁn recursive processes (we call this language PPA e ). We will work with
the approximations by finite processes of recursive processes, which are defined
like in [12].

Definition 9 Let P be a PPA ¢, process. For any n € IN, we define the n-th
finite approzimation of P as P° = {2, and for n > 0:

e X"l =X if XeId e Nil"*l = Nil e Nl =
o (a3 P)"*! = q; P .« (P&, Q"+ = Pl o, Q!

o (recX.P)"*' = P (recX.P)"/X} o (P+,Q)"" =P "t 4, Q"1 0

Note that for PPA ¢ processes it holds that their finite approximations are
equal to themselves. Also note that each finite approximation is a finite process,
and therefore we can use the results given in the previous section when reasoning
about finite approximations. The previous axiom system is extended with three
new rules:

. PP C
(R1) VneIN: PPCR

PCR

R2
P{recX.P/X}CrecX.P (R2)

VnelN: P®ns 2C R
PCR

(R3)

The first two rules already appeared in [12], and their soundness proofs easily
follow from the definition of the denotational semantics of recursive processes.?
Concretely, soundness of (R1) is trivial because [P{recX.P/X}] = ||~ ,[P"],
while (R2) is sound because we are working within a cpo, and so [P] is the least
upper bound of {[P]}2,.

The rule (R3) is added to our system because of technical reasons. This
rule is necessary because the semantics of finite syntactic processes (i.e. without
occurrences of the recursion operator) is given by non compact elements in the
semantic domain. We will comment more thoroughly this rule when we use it.

Lemma 5 The rule (R3) is sound.
Proof. Let us suppose that for all n € IN we have [P @ a1 2] Cpar [R]- That

n

is, for any n € IN, any sequence s, and any state A, p([P ®»-1 2],s,4) <

p([R], s, A). From the definition of the internal choice semantic function, we have
p([[PEB"T_l 2],s,A4) = nTil -p([P], s, A4) + % p([£2],5,4) = nTil p([P],s,4).

2 As usually, the (denotational) semantics of a recursive process is given by the limit
of its finite approximations, that is, [recX. P] = U5 [P"].



Taking into account the two previous facts, we have that for any s and A:

p(lIP]]’ SvA) = nlglgo nT_l -p([[P]], SvA) < p([[R]]v S’A)
which implies [P] Cear [R]- a

Theorem 5 (Soundness for PPA . )
Let P,@Q be PPA ¢ processes. We have that + P =@ implies P = Q. O

Now we will prove completeness of the axiomatization. First we present a
result (whose proof is essentially like in [12]), and then we extend Lemma 4 for
the case when one of the processes is not finite.

Lemma 6 Let P € PPA .. For any approximation P™ of P we have - P"C P.
a

Lemma 7 Let P € PPApe., and Q € PPAﬁn. [P] Cear [Q] implies P C Q.

Proof. Given that the finite approximations of P are a chain, such that [P] is
its least upper bound, we have [P°] Cpar - -+ Cpar [P"] - Cpar [P] Cear [@Q]-
Given that the processes P™ and @ are finite, we can apply the previous results
for finite processes, concluding that for all n we have P™C @, and applying (R2)
we have P C Q). O

Now, let us consider the case where P is finite but () is not. Given that the
usual way to assign semantics to recursive processes is by means of their finite
approximations, the most straight way for proving P C () would be to guarantee
that there exists m such that the m-th finite approximation of the process
fulfills [P] Cear [@™]. Then, given that P and Q™ are finite, we can apply
Lemma 4, deducing P C Q™. Besides, we have Q™ C @ (Lemma 6), and so,
applying (03), we would obtain P C Q. If finite processes were mapped into
compact (also called finite) elements in the semantic domain, then the existence
of such an m would be guaranteed, given that if R is a compact element and
RCpar LUR™ then there exists R’ such that R Cpar R, but unfortunately this is
not the case, as the following example shows.

Example 5 Consider P = recX.((a; Nil) D1 X), and Q = a; Nil. It is easy to
check that the finite approximations of P are given by P™ = (a; Nil) Dot 0.
By definition we have [P] = U[P"], and so we trivially get [P] Cpar U[P"].
Moreover, [P] describes a syntactic finite process, because [P] =par [@], and so,
we should be able to conclude P = ). By the previous lemma we have P C @,
but there does not exist m such that [Q] Epax [P™], otherwise we would have
N 1
1=p([Q] & {(a, )}) < p([P"], e, {(a,1)}) =1 = o

which is not the case. So, we have found a finite (syntactic) process, a; Nil, which
semantics is the least upper bound of the infinite nontrivial chain {[P"]}32;.
a



The previous example shows that in general we must use another way in
order to deduce P C @ from [P] Cpar [@]. This is the reason why the rule (R3)
was included in our logic system. This is an important difference with respect to
[12] where finite processes are mapped into compact elements. Note that even
if we delete probabilities, the previous example is not correct in the classical
testing theory, given that 2 is a zero of & ({2 is also a zero of the external
choice and parallel operators), and so the rule (R3) is not sound in that setting.
Let us remark that the only compact element of the semantic domain is the
one corresponding to divergence, given that for any process P different from
2 we can always construct a succession, for instance P" = P Sz 2, such
that P is lower than the limit (actually [P] = U[P™]) while for any n we have
[P] Epar [P™] does not hold.

Lemma 8 Let P € PPAﬁn and Q € PPApec. [P] Cpar [Q] implies P C Q).

Proof. We have [P] Cpar [Q] = U[Q™]. If there exists m such that [P] Cpar
[@™], then the proof can be done as previously indicated. So, let us suppose that
there does not exist such an m. Given that {Q"} are a chain, for any sequence
s and any state A, we have p([P], s, 4) < p([Q], 5, 4) = limy o0 p(IQ"], 5, A).

Let us consider those sequences s and those states A such that p([P], s, 4) >0
We have that for all £ > 0, (1 — 7) - p([P],s, A) < limp_5 p([Q"], s, A). Note
that (1— ¢) - p([P],s,A) = p([P Do 2],s,A).

Given that P is a finite process, the set of (s, A) pairs verifying p([P], s, 4) >0
is finite. So, for each & € IN there exists nj € IN such that for any sequence s
and any state A, such that p([P],s,4) > 0, we have p([P D1 2],s,A) <
p([Q™], s, A). Obviously, if p([P], s’, A’") = 0 then the previous result also holds,
and so we have [P ®,_1 2] Cpar [Q"*] and given that P &,_1 2 and Q"* are
finite processes, we can apply Lemma 4 obtaining P&, _1 2CQ"*, for all k € IN.
Again, given that for all n € IN, Q™ C @, we have for all k € N, P D1 NCQ,
and so, applying (R3), we conclude P C Q. O

Theorem 6 Let P, be PPA ¢ processes. [P] Cpar [@Q] implies P C Q.

Proof. If either P or @ is finite, then we apply Lemmas 4, 7, and 8. Otherwise,
by the definition of (semantic) finite approximations we have that for all n € IN,
[P"] Epar [P], and given that Cpar is a preorder, we have [P"] Epar [Q]. Now,
by Lemma 8, we have P" C @, and applying (R2) we conclude P C Q). O

Again, by the previous result and the equivalence between =p,r and & we get

Theorem 7 (Completeness for PPA . )
For any processes P,() € PPApe. , we have P~ @ — F P=Q. O

5 Extension of the System to the Parallel Operator

In this section we give some axioms for the parallel operator showing that it can
be considered as a derived one in the sense that it can be completely eliminated



in finite processes (by transforming processes where the parallel operator appears
into equivalent processes without occurrences of the parallel operator), and that
the occurrences of the parallel operator in recursive processes can be sunk in
such a way that there will be occurrences of the parallel operator but not in
the head of the expression (that is, these processes can be transformed into head
normal form).

These axioms indicate that the parallel operator is commutative and dis-
tributes over the internal choice. Moreover, we have an axiom indicating that
the parallel operator is strict, and that it can be eliminated if both processes are
Nil. We also have an ezpansion axiom similar to that in nonprobabilistic process
algebras. Finally, we have a rule indicating that this operator is congruent. Let
us comment that even though a parallel operator was not included in [19], and
so its (denotational) semantic function is not included there, this function is not
used in this paper given that soundness proofs of the following axioms are easy
with respect to & (the corresponding semantic function is given in [17]).

(CP)PlaQ=Qlla P (DPIG) P |4 ((Plpil P) = EPpil (P I|a P)
i=1 i=1
(DP) Plla2=1 (NP) Nil |4 Nil = Nil
Let A = {a1,...,a,} C Act and B = {by,...,b,,} C Act. If we consider the

processes P = Z[pl] a;; Py and Q = Z[qj] b;; Q;, then the following axiom is
sound = =
(EP) Plx Q=R
where R = i[m]%&w C={c,...,a}=(AUB)— X U(ANBNX), and
I;)jl-qj if ¢, =0a;=0b€X
pi if cx=a;€(A-—B)—X

Ty ¢ ifa=be(B-A)-X
pi+qi if ck=a;=bj€(ANB)—-X
Pi”XQj if ¢p=a;=0;€X
Pz”XQ if Ck:aiE(A—B)—X
Ry = Plx Q if cx=b€(B—A)—X
(P Ix Q) @y (Pllx Q;) if ck =ai=b; €(ANB) =X A p = E

pit4qj

Note that this last axiom can be applied to the process Nil (i.e. empty gen-
eralized external choices), so that the combination of (NP), (DP), and (EP)
will allow to remove trailing occurrences of the parallel operator.

Finally, we have that = is a congruence for the parallel operator, that is, we
have the following rule:
P=P'
"PTe=rTae

(C4



6 Conclusions

We have presented a sound and complete axiomatization of probabilistic testing
with generative probabilities. The rules and axioms have been presented in three
steps: first, we studied finite processes without parallel composition, then, we
extended the previous axiomatization to deal with recursively defined processes,
and finally, we gave sound axioms which indicate that the parallel operator can
be considered as a derived one from the rest of operators.

A possible extension of our work would be to include some kind of hiding
or restriction operator. Our results in [17] show that such inclusion is far from
easy if we want to have this operator as a derived one. Specifically, consider the
following processes

P=(a+pcb\c  Q=bay, (EB lg:)(a +», b>>

i=1
If we make an interpretation of hiding a la CCS, that is, considering that P be-
haves like a 4+, 7; b, and we use a suitable definition of testing (e.g. [5]) we have
that given p, in general, there do not exist values 0 < p',q1 ... Gn,P1-..pn < 1
such that P and @ are probabilistic testing equivalent. We have an additional
result. After a complicated redefinition of the parallel operator (using prenor-
malization factors) we got that P could be equivalent to the process (a+1b) @b,
where + indicates a priority operator similar to that in [16]. We worked out
a definition of the new semantic model but it was so unmanageable that we
decided not to include priorities in our framework.
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