
Testing Semantics for Probabilistic
LOTOS

Manuel Núñez and David de Frutos

Facultad de CC. Matemáticas, Dept. de Informática y Automática
Universidad Complutense de Madrid. E-28040 Madrid. Spain.

email: {manuelnu,defrutos}@eucmax.sim.ucm.es

Abstract

In this paper we present a probabilistic extension of LOTOS which is upward compatible
with LOTOS. We present testing semantics for the reactive and generative models de-
scribed in [vGSST90]. While there is a certain lose of the meaning of probabilities in the
reactive model, testing with probabilistic tests proves to be too strong, because it does not
relate behavior expressions which we expect to be equivalent. This is why we introduce
the limited generative model, where tests are not allowed to have explicit probabilities.
We give a fully abstract characterization for the reactive model, while we give alternative
characterizations (based on a set of essential tests) for the generative and limited gener-
ative models. We also present some algebraic laws for each of the models, including some
laws which establish the difference between the three models.

Keywords

Distributed Systems; LOTOS; Probabilistic Processes; Testing Semantics

1 INTRODUCTION

LOTOS [LOT88] has been widely used to specify concurrent systems. Nevertheless, it is
not completely adequate for the specification of real systems. In order to specify such
systems, LOTOS has been extended with probabilistic (e.g. [MFV93, KLL94]) and time
behaviors (e.g. [QdFA93, dFLL+94]). These extensions are very useful for the specification
of communication protocols, real-time systems and fault-tolerant systems. For example,
suppose that one wants to specify a communication protocol over a faulty medium. Using
LOTOS without probabilities to specify the system, it cannot be inferred that the message
will arrive for sure. By introducing probabilities, if the probability that a message is lost
is fixed, and the protocol (e.g. the ABP protocol) iterates the sending of the message
until the sender knows that the message has arrived, then it can be inferred that with a
probability equal to one, the message will (sooner or later) arrive.

∗ Research supported in part by the CICYT project TIC 94-0851-C02-02

In the field of probabilistic process algebras, a classification of the different models
has been proposed [vGSST90], which is based on the way of the interaction between the
processes and the environment. In this paper, we extend some LOTOS operators with a
probability, and we study how two of these models (the reactive and generative ones) can
be studied in the framework of testing semantics. But we will point out that these models
do not fulfill some natural properties and that is why we define another model, the limited
generative model, showing that those properties are fulfilled in this new model.

The main advantage of our work, in contrast with [vGSST90], is that we do not need
either to restrict the (syntactic) form of behavior expressions nor to define a different op-
erational semantics for each model; the syntax of probabilistic LOTOS and its operational
semantics will be the same for the reactive, the generative and the limited generative mod-
els. The differences between the models come from the different families of tests that are
considered in each model, and thus the same (syntactic) specification will have different
meanings, if considered in different models.

RELATED WORK

[vGSST90] discusses the reactive, generative and stratified models for PCCS. According
to the interaction between the processes and the environment, it is defined the reactive
model as the model where the environment may only offer a single action at a time. In
the generative model, the environment can simultaneously offer several actions and the
process chooses between them according to some probability distribution. The authors
define for each model strong bisimulations and give abstraction functions from one model
to another.

[GJS90] presents a probabilistic version of synchronous CCS (called PCCS) where the
sum operator is extended with probabilities (i.e.

∑
i∈I [pi]Ei, pi ∈ (0, 1] and

∑
pi = 1).

In [YL92], CCS is extended with a nondeterministic probabilistic choice operator. A new
notion of testing semantics is defined, where a process can pass a test with a set of prob-
abilities. In a recent work [JY95], fully abstract characterizations of the testing preorders
defined in [YL92] are presented.

Using probabilistic labeled transition systems, [Chr90] presents four partial orders based
on testing. [CSZ92] presents a testing semantics for probabilistic processes; as in the
nonprobabilistic case, processes and tests are essentially the same, while in [Chr90] they
were different. [YCDS94] presents an alternative characterization of the testing preorder
given in [CSZ92], introducing a set of essential tests, called probabilistic traces, which are
proved to have the same strength that the full family of tests.

[NdFL95] presents a testing semantics for a probabilistic process algebra with two choice
operators. An alternative characterization based on acceptance sets and a fully abstract
denotational semantics based on acceptance trees are given.

Also in the framework of LOTOS, some probabilistic extensions have been studied.
[MFV93] presents a probabilistic version of LOTOS, where a binary (nondeterministic)
probabilistic choice operator is introduced. In [KLL94], a true concurrency semantics
(based on event structures) is given to a probabilistic extension of a subset of LOTOS.
Again, the extension consists in the inclusion of a nondeterministic probabilistic choice
operator.

The structure of the rest of this paper is as follows. Section 2 presents the operational
semantics of our language and the associated testing semantics. Section 3 examines the re-
active model, including a denotational semantics which is proved to be fully abstract, and
the generative and limited generative models, presenting alternative characterizations of
the testing preorders. Section 4 shows how the standard may and must testing preorders
can be recovered from the generative model. Section 5 presents some algebraic laws which
respect the different testing equivalences. Section 6 discusses possible denotational seman-
tics for the generative and limited generative models. Finally, in Section 7 we present our
conclusions and directions of future work.

2 A PROBABILISTIC EXTENSION OF LOTOS

We will work within a probabilistic version of a subset of LOTOS [LOT88]. In contrast
with previous approaches, we introduce a probability in the LOTOS (binary) choice op-
erator, and thus this operator remains deterministic, in the sense that a choice between
both sides of the choice operator is influenced by the environment (this is shown in Ex-
ample 1). We also introduce a probability in the parallel operator, which indicates the
weight of both sides of the parallel operator when an interleaving event is offered by the
environment.

2.1 Syntax of PL (Probabilistic LOTOS)

As usual when giving the syntax of LOTOS, we will consider a universe of gates G that
includes all the gate names; g, g′, g1, . . . range over G. G,G′, G1, . . . range over sets of gate
names. We will also consider an internal event i which is not visible for an observer. Then
the set E = G ∪ i will be the universe of events; e, e′, e1, . . . range over E . Finally, we
consider a finite set Id of process variables.

Definition 1 The set of PL behavior expressions is defined by the BNF-expression:

B ::= stop |X | e ; B | B[]pB | B |[G]|p B | hide G in B |X := B

where p ∈ (0, 1), e ∈ E , G ⊆ G and X ∈ Id.

From now on, we usually omit the term probabilistic when referring to probabilistic
behavior expressions (or probabilistic tests).

Example 1 Let B = g ;B1[]pg
′ ;B2. Intuitively speaking, if the environment only offers

g (resp. g′), then B performs g (resp. g′) with a probability equal to 1. If the environment
offers both g and g′ (with the same probability), then B performs g with a probability
equal to p and performs g′ with a probability equal to 1− p.

2.2 Operational Semantics

In order to define a testing semantics for PL, first we will define the adequate operational
semantics. The meaning of a probabilistic transition B

e−→p B′ is that if all the gate

(PRE)
e;B

e−→1B

(CHO1)
B1

e−→qB
′
1

B1[]pB2
e−→ p·q

r(B1,B2,∅,p)
B′

1

(CHO2)
B2

e−→qB
′
2

B1[]pB2
e−→ (1−p)·q

r(B1,B2,∅,p)
B′

2

(PAR1)
B1

e−→qB
′
1 ∧ e/∈G

B1|[G]|pB2
e−→ p·q

r(B1,B2,G,p)
B′

1|[G]|pB2
(PAR2)

B2
e−→qB

′
2 ∧ e/∈G

B1|[G]|pB2
e−→ (1−p)·q

r(B1,B2,G,p)

B1|[G]|pB′
2

(PAR3)
B1

g−→sB
′
1 ∧ B2

g−→tB
′
2 ∧ g∈G

B1|[G]|pB2
g−→ s·t

r(B1,B2,G,p)

B′
1|[G]|pB′

2

(HID1)
B

e−→qB
′ ∧ e/∈G

hide G in B
e−→qhide G in B′ (HID2)

B
g−→qB

′ ∧ g∈G
hide G in B

i−→qhide G in B′

(REC)
B

e−→qB
′ ∧ X :=B

X
e−→qB′

Figure 1 Operational Semantics of PL

names are available from the environment, the probability with which B performs e and
then behaves as B′ is equal to p. The rules which define the operational semantics are
given in Figure 1.

We have preferred to avoid the use of indices that are normally used to distinguish
between the different derivations of the same probability transition. But we will take
into account the possibility of having the same transition more than one time by using
multisets of transitions instead of set of transitions.

Example 2 Let B = g ; stop[] 1
2
g ; stop. Then we will have the transition B

g−→ 1
2
stop

two times.

In the rules for the choice and parallel operators we use a normalization factor. In-
tuitively speaking, r(B1, B2, G, p) calculates the sum of the probabilities associated with
the events which do not belong to G that B1 (resp. B2) may perform, multiplied by p
(resp. 1 − p). This factor also considers the probability with which B1 and B2 (simulta-
neously) may perform events in G. That is, the normalization factor calculates the whole
probability with which both behavior expressions may perform events, considering the
possible restrictions imposed by the synchronization set, and taking also into account the
probability p. Formally, this factor is defined by

r(B1, B2, G, p) = p·
∑
B′

1

{| q | ∃e /∈ G : B1
e−→q B

′
1 |}+ (1− p)·

∑
B′

2

{| q | ∃e /∈ G : B2
e−→q B

′
2 |}

+
∑

B′
1,B

′
2

{| s · t | ∃g ∈ G : B1
g−→s B

′
1 ∧ B2

g−→t B
′
2 |}

�
�

�
�� ��

� �

s0

s1 s3s2

s4 s5

[1
6
] e1

[1
3
] e3

[1] e2 [1] e3

������
[1
2
] e1

S = {s0, . . . , s5} μ(s0, e1, s1) =
1
6

μ(s0, e3, s2) =
1
3

μ(s0, e1, s3) =
1
2

μ(s0, e, t) = 0 if (e, t) /∈ {(e1, s1), (e3, s2), (e1, s3)}
μ(s1, e2, s4) = 1
μ(s1, e, t) = 0 if (e, t) �= (e2, s4)
μ(s4, e, t) = 0 for all (e, t) ∈ E × S

. . .

Figure 2 plts of (e1 ; e2 ; stop[] 1
3
e3 ; stop)[] 1

2
e1 ; e3 ; stop

While the rules for the prefix, hiding and recursion operators do not need any expla-
nation, we briefly explain the rules for the choice and parallel operators. In the rules
(CHO1) and (CHO2), the normalization factor has as parameter the empty set of gate
names because all the events could be performed by both behavior expressions. Then,
if any of the behavior expressions may perform no event, the whole probability goes to
the other one; in this case the normalization factor evaluates either to p or to 1 − p.
Otherwise, the probabilities associated with the events performed by the left hand side
(resp. the right one) are multiplied by p (resp. 1−p); in this case the normalization factor
evaluates to 1. Something similar happens to (PAR1) and (PAR2), but considering as
parameter of the normalization factor the synchronization set. (PAR3) considers the case
when a synchronization event may be performed by both sides of the parallel operator.

As usual, from the defined operational semantics we induce the corresponding notion
of labeled transition system.

Definition 2 A probabilistic labeled transition system (plts) over E is a 3-tuple (S, μ, s0)
where S is a set of states, μ : S × E × S −→ [0, 1] is the probability distribution function
and s0 ∈ S is the initial state. The function μ fulfils that for all s ∈ S,

∑
e,s′ μ(s, e, s

′) is
equal to 1 or equal to zero (blocked state).

Given a syntactic behavior expression B we can build its associated plts as usual: the
initial state is labeled with B, and if B

e−→p B′ then μ(B, e, B′) = p. Then, the same
method is applied to every B′ (see Figure 2 for an example). Thus, at the semantic level,
a behavior expression may be identified with the plts defining its operational semantics.

2.3 Testing Semantics

A probabilistic test is just a behavior expression (plts) with a set of successful states. As
in [CSZ92, YCDS94] we slightly differ from the standard formulation of tests given in
[Hen88], because successful states, instead of a distinguished acceptance event, are used
to denote the passing of tests. Anyway, these successful states can be simulated adding a
new event ok to the set of events and obliging the tests to be behavior expressions such
that this new event must always appear guarded by some other event or to be a successful
test (i.e. T := ok ;stop). In fact, in the rest of this paper we will mainly use this alternative
characterization, and for short, we will just write ok to denote the test ok ; stop.

Definition 3 A probabilistic test (pt) over E is a 4-tuple (S, μ, s0, Suc) where (S, μ, s0)
is a plts and Suc ⊆ S is the set of successful states. In the graphical representation,
successful states will be represented by two concentric circles.

We have to define the way a behavior expression and a test interact. Even if a test-
ing semantics was defined for LOTOS in [BSS86], we have preferred to use some other
definitions and notations, closer to those by Hennessy [Hen88]. Testing is performed by
studying the computations of the behavior expression that is obtained by putting a test
in parallel with the behavior expression to be tested, taking as associated probability 1

2
(the choice of this probability has been done to keep the symmetry between the internal
events of the behavior expression and those of the test) and as synchronization set the
full set of gate names (i.e. the acceptance event ok is not included). Test application will
be represented by B | T, and is (formally) defined as follows:

B | T = hide G in (B |[G]| 1
2
T)

Now, we define a function which computes the probability with which a behavior ex-
pression passes a test.

Definition 4 Let B be a behavior expression and T a test. As usual, we will call com-
putations to the (possibly infinite) sequences of transitions from S = B | T of the form

C = S
e1−→p1 S1

e2−→p2 S2 . . . Note that for all j, ej = i or ej = ok.

We distinguish infinite computations and blocked computations, which are those finite
computations C = S

e1−→p1 S1
e2−→p2 S2 . . . Sn−1

en−→pn Sn that cannot be extended, that

is Sn
e−→p S

′ for no e, p, S ′. In this case, we will say that C has length n.

Given a blocked computation C = S
e1−→p1 S1

e2−→p2 S2 . . . Sn−1
en−→pn Sn, we induc-

tively define its probability Pr(C) by

Pr(C) =

{
p if length(C) = 1 ∧ C = S

e−→p S
′

p · Pr(C ′) if length(C) > 1 ∧ C = S
e−→p C

′

We call successful computations to those blocked computations of S such that there
exists some j ∈ {1, . . . , n} such that ej = ok. We will denote by S̃ the set of successful
computations of S. We say that a computation is unsuccessful whenever it is infinite, or
blocked but not successful.

Definition 5 Let B be a behavior expression and T a test, and let us consider S = B |T .
We say that B passp T if

∑
C∈S̃ Pr(C) = p.

The probability of blocked unsuccessful computations can be defined in a similar way,
taking B blockedp T if

∑
C∈Ŝ Pr(C) = p where Ŝ denotes that set of computations. Fi-

nally, we can define the probability of infinite computations of S as 1 − (
∑

C∈S̃ Pr(C) +∑
C∈Ŝ Pr(C)). Thus, we have that the probability of unsuccessful computations of S is

equal to 1−∑
C∈S̃ Pr(C).

It is important to note that the fact that successful computations cannot be extended is
essential when considering divergent behavior expressions. For instance, we have

X := (i ; X)[]p(a ; stop) pass0 ok, because X | ok ok−→1/2 X | stop is not a successful

computation, since it can be infinitely extended by X | stop i−→1 X | stop . . .
Now, given a family of tests we can define the corresponding notion of testing preorder

between probabilistic behavior expressions with respect to the family.

Definition 6 Given a set of probabilistic tests T , and two behavior expressions B1 and
B2, we write B1 	T B2 if ∀T ∈ T : B1 passp T ∧ B2 passq T =⇒ p ≤ q. Besides we write
B1 ≈T B2 iff B1 	T B2 and B2 	T B1.

3 DIFFERENT TESTING SEMANTICS

In this section we define testing semantics for the reactive and generative models (as
proposed in [vGSST90]) and for the limited generative model (a variant of the generative
model).

3.1 Reactive Model

Let us remember that in the reactive model, the environment (i.e. the tests) only can
offer one gate name each time. Using [Mil80] terminology, only one button can be pressed
at the same time. This gives rise to tests being just traces (see Figure 3 for the general
schema).

Definition 7 (Reactive Tests) The set of reactive tests (denoted by R) is defined by
the BNF expression T = ok | g ; T .
We write B1 	R B2 iff ∀ T ∈ R : B1 passp T ∧ B2 passq T =⇒ p ≤ q.

A fully abstract characterization can be given in terms of probabilistic traces. These
are defined by extending ordinary traces of behavior expressions with a number which
indicates the probability with which the behavior expression can perform the trace (if
this trace is offered by the environment).

Definition 8 Given a behavior expression B, we define its set of probabilistic traces as:

[[B]] = {(s, p) | s ∈ G ∗ ∧ B passp s ◦ ok}

where if s = 〈g1, g2, . . . , gn〉 then s ◦ ok is the reactive test g1 ; g2 ; . . . gn ; ok.

Even if we have used the notion of passing a test to calculate the probability of each
trace, it is clear that this value could be directly calculated from the syntactic definition of
the behavior expression, although this would unnecessarily complicate the corresponding
definition.

Definition 9 Let X, Y ⊆ (G ∗ × [0, 1]). We write X⊆̃Y if for all (s, p) ∈ X there exists
q ≥ p such that (s, q) ∈ Y . We write B1 �R B2 whenever [[B1]]⊆̃[[B2]].

Note that within this reactive model we can distinguish a blocked behavior expression
(e.g. stop) from a divergent behavior expression (e.g. X := i ;X), because the semantics of
the first one includes (ε, 1) while in the latter the empty trace has null probability. This is
so, because a divergent behavior has no successful computation, and thus it cannot pass
the test ok (more exactly, this test is passed with a probability equal to 0). In fact, we
have X := i ;X �R stop. Also note that, in general, (i ;B)[]p(i ;B

′) and B[]pB
′ are not

equivalent.

Theorem 1 (Full Abstraction) B1 	R B2 iff B1 �R B2.

Proof. The proof is easy from the definition of [[B]] due to the close relation between
probabilistic traces and reactive tests.

While the reactive model is very easy to work with, it presents a serious problem.
There is no way of relating different gate names, because the meaning of probabilities in
the choice operator is partially lost, as shown by the forthcoming Proposition 1.

Definition 10 Given a behavior expression B, we define the set of its initial events as
ini(B) = {e ∈ E |∃p, B′ : B

e−→p B
′}.

Proposition 1 Let B1, B2 be behavior expressions such that B1
i−→p B

′
1 ∧ B2

i−→q B
′
2

for no p, q, B′
1, B

′
2 and such that ini(B1) ∩ ini(B2) = ∅. Then, for any 0 < p, q < 1 we

have: B1[]pB2 ≈R B1[]qB2

For instance, if g �= g′, we have (g ; B)[] 1
2
(g′ ; B′) ≈R (g ; B)[] 1

3
(g′ ; B′). This loss of

probabilistic information leads us to the study of the generative model.

3.2 Generative Model

Let us remember that in the generative model, the environment (i.e. the tests) may offer
more than one event at a time, and with different probabilities. This means that more than
a button can be simultaneously pressed, and buttons can be pressed with different strengths.
Then, the adequate family of tests to capture this semantics, which we will denote by GE ,
is the full set of tests given by Definition 3, and thus they (almost) correspond to arbitrary
behavior expressions.

Definition 11 B 	GE B′ iff ∀ T ∈ GE : B passp T ∧ B′ passq T =⇒ p ≤ q.

Let us note that in contrast with the generative model described in [YCDS94], this
relation is not an equivalence relation because we allow divergent behavior expressions,
and so, for instance, X := i ;X 	GE stop, while stop �	GE X := i ;X. Nevertheless, it is
true that if we restrict ourselves to divergence free behavior expressions, we have a similar
result to that in [YCDS94]:

�

� �

�
�

�
��

�
�
�
��

[p11] e11 [p1n1] e1n1

�

� �

�
�

�
��

�
�
�
��

[p21] e21 [p2n2] e2n2

�
...
�

� �

�
�

�
��

�
�
�
��

[pm1] em1 [pmnm] emnm

��

�

g1
�

g2
�
...
�

gm

��

[p1i1]

[p2i2]

[pmim]

e1i1

e2i2

emim

.

. . .

.

. . .

�

� �

�
�

�
��

�
�
�
��

[1
n1
] g11 [1

n1
] g1n1

�

� �

�
�

�
��

�
�
�
��

[1
n2
] g21 [1

n2
] g2n2

�
...
�

� �

�
�

�
��

�
�
�
��

[1
nm

] gm1 [1
nm

] gmnm

��

[1
n1
]

[1
n2
]

[1
nm

]

g1i1

g2i2

gmim

.

. . .

.

. . .

where ∀ j (1 ≤ j ≤ m) :
nj∑
k=1

pjk = 1 and ∀ j (1 ≤ j ≤ m) : i �= k ⇒ gji �= gjk.

Figure 3 Reactive tests, probabilistic barbs and limited probabilistic barbs.

Theorem 2 Let B,B′ be divergence free behavior expressions (i.e. such that they can
never perform an infinite sequence of i’s), then we have

B 	GE B′ ⇐⇒ B′ 	GE B (⇐⇒ B ≈GE B′)

An alternative characterization of this semantics can be given in terms of probabilistic
barbs (called probabilistic traces in [YCDS94]), which are in fact a set of essential tests.
To define them, we have first to extend the binary choice operator to an n-ary one.

Definition 12 Let B1, B2, . . . , Bn be behavior expressions and 0 < p1, p2, . . . , pn < 1

such that
n∑

i=1

pi = 1. We inductively define the behavior expression
n∑

i=1

[pi]Bi (n ≥ 2) as:

•
2∑

i=1

[pi]Bi = B1[]p1B2 •
n∑

i=1

[pi]Bi = B1[]p1

n∑
i=2

[
pi

1− p1
]Bi (n > 2)

Definition 13 (Probabilistic Barbs) The set of probabilistic barbs (denoted by PB)
is defined by the BNF expression T = ok |

n∑
i=1

[pi] ei ; Ri, where
n∑

i=1

pi = 1, Ri = stop

(1 ≤ i ≤ n− 1), and Rn = T .

That is, a probabilistic barb is either equal to the test ok or it is a test such that
all the outgoing transitions go to stop, but a single one whose continuation is another
probabilistic barb. The general form of probabilistic barbs is presented in Figure 3.

Theorem 3 (Alternative Characterization) B 	GE B′ iff B 	PB B′.

Proof. The proof is an adaptation to our syntax of that given in [YCDS94], although some
additional care is needed, because divergent behavior expressions are now allowed.

In the generative model all the probabilistic information appearing in behavior expres-
sions is captured. In fact, that is done in a too strict way, and thus we distinguish behavior
expressions which intuitively should be equivalent. As we will see, that is because the full
family of tests has enough power to discriminate the internal structure of probabilistic
nondeterminism. This is illustrated by the following

Example 3 Let B and B′ be defined as follows:

B = i ; (g ; stop[] 1
4
g′ ; stop)[] 1

2
i ; (g ; stop[] 3

4
g′ ; stop)

B′ = g ; stop[] 1
2
g′ ; stop

We would expect B and B′ to be equivalent, because applying a reasonable pseudo-
distributive law to B we obtain B′. This is better understood using a CSP-like notation.
In such a case we would have B = (g� 1

4
g′) � 1

2
(g� 3

4
g′) and B′ = g� 1

2
g′, where stop’s

have been omitted. But these two processes can be distinguished by any of the tests
T = g ; ok[]pg

′ ; stop, for any p ∈ (0, 1) with p �= 1
2
.

The fact that for p = 1
2
both behavior expressions are not distinguished suggested us to

study the case in which tests are restricted to be equitable. Thus we obtain the so called
limited generative model which we present in the next section.

3.3 Limited Generative Model

In this model, we force tests to be deterministic and such that all the outgoing transitions
from any state are labeled with equal probabilities. This means that several buttons can
be simultaneously pressed, but all of them with the same strength.

Definition 14 We define the set of limited generative tests (denoted by LG) as the least
set of tests TLG = (S, μ, s0, Suc) satisfying the following conditions:

• For any s ∈ S, and any g ∈ G, there do not exist s′, s′′ (s′ �= s′′) such that μ(s, g, s′) > 0
and μ(s, g, s′′) > 0.

• For any s ∈ S, there does not exist s′ such that μ(s, i, s′) > 0.
• For any s ∈ S, let ns = |{| g |∃r′ : μ(s, g, r′) > 0 |}| (i.e. ns is the number of outgoing

transitions from s). Then, ∀s′ ∈ S, g ∈ G : μ(s, g, s′) > 0 ⇒ μ(s, g, s′) = 1
ns
.

In the previous definition, with the first condition we express that for any state s ∈ S
and any gate name g there exists at most one state s′ such that μ(s, g, s′) > 0. The second
one says that there are no transitions labeled with i leaving any state . The last condition
says that for any state, all the outgoing transitions are labeled with the same probability.

As in the previous case, an alternative characterization of this semantics can be given in
terms of limited probabilistic barbs, which are those probabilistic barbs with no transition
labeled with i, and such that all the outgoing transitions from the same state are labeled

by different gate names, but have the same probability. See Figure 3 for their general
schema.

Definition 15 (Limited Probabilistic Barbs) The set of limited probabilistic barbs

(denoted by LPB) is defined by the BNF expression T = ok |
n∑

i=1

[
1

n
] gi ; Ri, where

i �= j ⇒ gi �= gj, Ri = stop (1 ≤ i ≤ n− 1), and Rn = T .

Theorem 4 (Alternative Characterization) B 	LG B′ iff B 	LPB B′.

Proof. It is similar to that of Theorem 3.

Under this model, we have that the processes considered in Example 3 are now equiv-
alent. That is, i ; (g[] 1

4
g′)[] 1

2
i ; (g[] 3

4
g′) ≈LG g[] 1

2
g′.

4 RECOVERING NONPROBABILISTIC FROM PROBABILISTIC
TESTING

In this section we relate the may and must testing preorders for nonprobabilistic ∗
LOTOS and our own probabilistic models. The classical notions of nonprobabilistic test,
composition of nonprobabilistic behavior expressions and nonprobabilistic tests, and suc-
cessful computation can be recovered from those in Section 2 by forgetting the probabilistic
information on them (formal definitions of these concepts can be found in [dFNQ95] where
a testing semantics for LOTOS is presented). Next we remind the definitions of the may
and must testing preorders.

Definition 16 We say that a behavior expression B may satisfy a test T , and we will
write B may T , iff B | T has some successful computation. We say that B must satisfy a
test T , and we will write B must T , iff any complete (i.e. blocked or infinite) computation
of B | T is a successful computation.

Now, we translate the previous definition to the probabilistic case, just considering that
a behavior expression may pass a probabilistic test if it is passed with positive probability,
and that it must pass the test if it is passed with a probability equal to 1.

Definition 17 Let Bp be a probabilistic behavior expressions and Tp a probabilistic test,
and suppose that Bp passr Tp. Then we write Bp may Tp if r > 0, and Bp must Tp if r = 1.

Lemma 1 Bp may Tp iff Bp | Tp has a successful computation. Bp must Tp iff the proba-
bility of unsuccessful computations of Bp | Tp is equal to zero.

∗In the rest of this section we will distinguish between probabilistic and nonprobabilistic behavior ex-
pressions (tests), denoting them by Bp, B

′
p, . . . (Tp, T

′
p, . . .) and B,B′, . . . (T, T ′, . . .) respectively.

The following definition covers both the probabilistic and the nonprobabilistic cases,
just by taking in each case the corresponding family of tests.

Definition 18 Let B and B′ be behavior expressions (probabilistic or not). We define:

• B 	may B
′ if ∀T : B may T ⇒ B′ may T

• B 	must B
′ if ∀T : B must T ⇒ B′ must T

The following Lemma states that in order to characterize the probabilisticmay preorder,
it is enough to consider reactive tests (i.e. trace tests). This is similar to the nonproba-
bilistic case where traces are enough to characterize the may preorder [Hen88].

Lemma 2 Bp 	may B
′
p iff ∀T ∈ R : (Bp passr T ∧ r > 0) ⇒ (Bp passs T ∧ s > 0).

Definition 19 Let B be a behavior expression. We say that a probabilistic behavior
expression Bp is a probabilistic extension of B if Bp can be obtained from B by assigning
probabilities to the choice and parallel operators that appear in B.

Example 4 Let B = (g1 ; stop[]g2 ; stop) |[G]| (g3 ; stop). Then the following probabilistic
behavior expressions are two of the probabilistic extensions of B:

(g1 ; stop[] 1
3
g2 ; stop) |[G]| 3

5
(g3 ; stop)

(g1 ; stop[] 1
4
g2 ; stop) |[G]| 1

2
(g3 ; stop)

Theorem 5 Let B,B′ be two divergence free and finite state behavior expressions. Then
for any probabilistic extensions Bp of B and B′

p of B′, we have:

• B 	may B
′ ⇐⇒ Bp 	may B

′
p• B 	must B

′ ⇐⇒ Bp 	must B
′
p

Proof. (Sketch) The may case is immediate due to the correspondence between the suc-
cessful computations of B | T and Bp | Tp. In this case, the hypothesis of divergence free
and finite state are not necessary. Nevertheless, in the must case we must be more careful,
since a probabilistic version of an infinite computation of B | T may or may not have a
positive probability. In fact, for behavior expressions not verifying the hypothesis, the
result is false in general, as proves the following example.

Example 5 Let B := (i ;B)[](a ;stop) and B′ := (i ;B′)[](b ;stop). Clearly, B 	must B
′ (in

fact they are (must nonprobabilistic) equivalent, because they must pass no test) while
for their probabilistic extensions Bp := (i ; Bp)[] 1

2
(a ; stop) and B′

p := (i ; B′
p)[] 1

2
(b ; stop)

we have Bp �	must B
′
p (for example, Bp must a ; ok). On the other hand, a ; stop 	must Bp

(in fact they are also (must probabilistic) equivalent), while a ; stop �	must B.

5 ALGEBRAIC LAWS

In this section we present algebraic laws for each of the semantic equivalences ≈i with
i ∈ {R, GE , LG}. We shall write B ≈ B′ meaning that B ≈i B

′ ∀i ∈ {R, GE , LG}.
First we give a theorem which relates the three models.

Theorem 6 B 	GE B′ =⇒ B 	LG B′ =⇒ B 	R B′

In Section 3, we have presented some examples proving that in general the converse
implications are false.

Next we present the commutative and associative laws for the operators of our language.

Proposition 2 The following laws hold:

Commutative Laws

B[]pB
′ ≈ B′[]1−pB

B |[G]|p B′ ≈ B′ |[G]|1−p B
hide G′ in (hide G in B) ≈ hide G in (hide G′ in B)

Associative Laws

B[]p(B
′[]qB

′′) ≈ (B[]p′B
′)[]q′B

′′

B |[G]|p (B′ |[G]|q B′′) ≈ (B |[G]|p′ B′) |[G]|q′ B′′

where p′ = p
p+q·(1−p)

and q′ = p+ q · (1− p)

Although in these models associative laws hold, probabilistic models with nonassociative
operators could be also considered (see [NPM94]). Now we will present the distributive
laws.

Proposition 3 The following laws hold:

e ; (i ; B[]pi ; B
′) ≈ (e ;B)[]p(e ;B

′)
(B[]pB

′) |[G]|q B′′ ≈ (B |[G]|q B′′)[]p(B
′ |[G]|q B′′)

Obviously, the possible distributive law g ; (B[]pB
′) ≈i (g ;B)[]p(g ;B

′) is false for any
of the models. The following laws claim that stop is the neutral element for the choice
operator and the parallel operator when the synchronization set is empty.

Proposition 4 The following laws hold:

B[]pstop ≈ B
B |[]|p stop ≈ B

Now we will present an useful law for the parallel operator. It says that whenever two
processes that cannot perform i’s along their evolutions are composed in parallel with
total synchronization, the probability in the parallel operator may be ignored.

Proposition 5 Let B1, B2 be two behavior expressions which cannot perform i’s along

their evolutions †. Then the following law holds:

B1 |[G]|p B2 ≈ B1 |[G]|q B2, for any p, q ∈ (0, 1)

When defining the interaction between a process and a test, we take 1
2
as the probability

in the parallel operator connecting them. In fact, for a language without i’s, like CSP,
in which (internal) choices are always related to an explicit choice operator, it would not
matter the value used in the composition.

The following law says that in the reactive and limited generative models, choices
prefixed by i’s (i.e. internal choices) are worse than the corresponding choices without
the prefix of these i’s.

Proposition 6 The following law holds:

(i ;B)[]p(i ;B
′) 	i B[]pB

′, where i ∈ {R, LG}

Somewhat surprisingly, this law is not true for the generative model. Let us consider
B = i ; g[] 1

2
i ; g′, B′ = g[] 1

2
g′, where stop’s have been omitted. For T = g ; ok[] 1

3
g′ ; stop

we have B pass 1
2
T while B′ pass 1

3
T . Intuitively speaking, this law is true for the limited

generative model because tests cannot be sufficiently biased in favour of bad terminations,
as we have done with T for the generative case.

6 DENOTATIONAL MODELS

Although we have presented some alternative characterizations for the generative and
limited generative models, these characterizations are not sufficiently abstract to gener-
ate from them a fully abstract denotational semantics in an easy way. To define such a
semantics for the generative case, we have considered in [NdFL95] a class of trees similar
to acceptance trees in [Hen88], but where probabilities are introduced in an adequate way.
These trees represent internal probabilistic choices among a family of states labeled with
a set of actions, from which leaves a probabilistic external choice among the actions in
each state.

It is important to note that we can have several states labeled with the same set of
actions under the same node of the tree, and we cannot join these states if they are labeled
with different probability distributions. This fact corresponds to the situation illustrated
by Example 3. In our generative model, using a CSP-like notation, (a� 1

4
b) � 1

2
(a� 3

4
b)

have two states {a 1
4
, b 3

4
} and {a 3

4
, b 1

4
}, reachable with probability equal to 1

2
. Instead, in

the denotational semantics for the limited generative model, these two states should be
joined in a single state {a 1

2
, b 1

2
} which is reachable with probability equal to 1. This is so

because under the limited generative model (a� 1
4
b) � 1

2
(a� 3

4
b) is equivalent to a� 1

2
b.

†Formally, B cannot perform i’s along its evolution if there do not exist g1, g2, . . . , gn, p1, p2, . . . , pn, p

and B1, B2, . . . , Bn, B
′ such that B

g1−→p1 B1
g2−→p2 B2 . . .

gn−→pn Bn
i−→p B′.

7 CONCLUSIONS AND FUTURE WORK

We have presented testing characterizations of the reactive and generative models de-
scribed in [vGSST90], and we have introduced another probabilistic model (the limited
generative model) where tests have no explicit probabilities (formally, the outgoing tran-
sitions from each state are labeled with the same probability). For the reactive model,
we have given a denotational semantics, which is proved to be fully abstract with respect
to the induced testing semantics. For the generative and limited generative models we
have presented a family of essential tests, which give rise to an alternative characteri-
zation. We also have shown how nondeterministic (nonprobabilistic) information can be
recovered from the probabilistic models. Finally, we have given several laws which respect
the different testing equivalences, and we have sketched a (fully abstract) denotational
semantics for the generative and limited generative models.

As future work, we seek to define precisely these denotational semantics for the studied
models, and find complete axiomatizations based on the algebraic laws given in Section 5.
We are also interested on the study of some other models between the reactive and limited
generative models, and between the limited generative and generative models, completing
a hierarchy of probabilistic models. We also would like to define the adequate extensions
of HML [HM85] characterizing our different semantics, and apply them to the verification
of properties of probabilistic processes. These logics should be similar to that presented
in [LS92].

Acknowledgements The authors would like to thank the anonymous referees of this
paper for their valuable comments.

REFERENCES

[BSS86] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their imple-
mentations and their tests. In PSTV VI, pages 349–360, 1986.

[Chr90] I. Christoff. Testing Equivalences for Probabilistic Processes. PhD thesis, Depart-
ment of Computer Systems. Uppsala University, 1990.

[CSZ92] R. Cleaveland, S.A. Smolka, and A.E. Zwarico. Testing preorders for probabilistic
processes. In 19th ICALP, LNCS 623, pages 708–719, 1992.

[dFLL+94] D. de Frutos, G. Leduc, L. Léonard, L. Llana, C. Miguel, J. Quemada, and
G. Rabay. Belgian-Spanish proposal for a time extended LOTOS. In Working Draft on
Enhancements to LOTOS (Annex E). ISO/IEC JTC1/SC21/WG1, 1994.

[dFNQ95] D. de Frutos, M. Núñez, and J. Quemada. Characterizing termination in LO-
TOS via testing. In PSTV XV, pages 225–240, 1995.

[GJS90] A. Giacalone, C.-C. Jou, and S.A. Smolka. Algebraic reasoning for probabilistic
concurrent systems. In Proceedings of Working Conference on Programming Concepts
and Methods, IFIP TC 2, 1990.

[Hen88] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, 1985.

[JY95] B. Jonsson and W. Yi. Compositional testing preorders for probabilistic processes.
In 10th IEEE Symposium on Logic In Computer Science, 1995.

[KLL94] J.P. Katoen, R. Langerak, and D. Latella. Modeling systems by probabilistic
process algebra: An event structures approach. In FORTE VI, 1994.

[LOT88] LOTOS. A formal description technique based on the temporal ordering of ob-
servational behaviour. IS 8807, TC97/SC21, 1988.

[LS92] K.G. Larsen and A. Skou. Compositional verification of probabilistic processes. In
CONCUR’92, LNCS 630, pages 456–471, 1992.

[MFV93] C. Miguel, A. Fernández, and L. Vidaller. LOTOS extended with probabilistic
behaviours. Formal Aspects of Computing, 5:253–281, 1993.

[Mil80] R. Milner. A Calculus of Communicating Systems. LNCS 92, 1980.

[NdFL95] M. Núñez, D. de Frutos, and L. Llana. Acceptance trees for probabilistic pro-
cesses. In CONCUR’95, 1995.

[NPM94] M. Núñez, P. Palao, and M.T. Morazan. Associativity in probabilistic process
algebras. Technical Report DIA-UCM 14/94, Universidad Complutense de Madrid,
1994.

[QdFA93] J. Quemada, D. de Frutos, and A. Azcorra. TIC: A TImed Calculus. Formal
Aspects of Computing, 5:224–252, 1993.

[vGSST90] R. van Glabbeek, S.A. Smolka, B. Steffen, and C.M.N. Tofts. Reactive, gen-
erative, and stratified models of probabilistic processes. In 5th IEEE Symposium on
Logic In Computer Science, pages 130–141, 1990.

[YCDS94] S. Yuen, R. Cleaveland, Z. Dayar, and S.A. Smolka. Fully abstract character-
izations of testing preorders for probabilistic processes. In CONCUR’94, LNCS 836,
pages 497–512, 1994.

[YL92] W. Yi and K.G. Larsen. Testing probabilistic and nondeterministic processes. In
PSTV XII, pages 47–61, 1992.

Mr. Manuel Núñez graduated in “Mathematics (Computer Science)” in 1992 from the
Universidad Complutense de Madrid (UCM). Presently he is developing his PhD Thesis
which is devoted to the study of Testing Semantics for Probabilistic Process Algebras, and
hopefully he expects to shortly finish it. His main research area is “Process Algebras”,
and more specifically the semantics of probabilistic processes.

Prof. David de Frutos graduated in “Pure Mathematics and Computer Science” in 1981
from the Universidad Complutense de Madrid (UCM) and achieved a PhD in ”Mathe-
matics (Computer Science)” in 1985 with a Thesis devoted to “Denotational Semantics
of Probabilistic Constructions (Probabilistic Powerdomains)”. He is presently Professor
of Computer Science from 1991, and Head of the Computer Science Department of UCM.
His main research topic is “Formal Models of Concurrency”, and presently he is specially
devoted to the study of the semantics of timed and probabilistic processes.

