
Appendix: Polynomial reductions
In this appendix we present the polynomial reductions used
in our experiments.

Polynomial reduction from VC to SP
We polynomially reduce VC to SP as follows. Given a VC in-
stance, that is, a graph G = (V,E), where V = {v1, . . . , vn}
is the set of vertexes and E = {e1, . . . , em} is the set of
edges, and a natural K, we construct an SP instance (that
is, a set of sets and a natural P ) from it as follows. We define
n sets S1, . . . , Sn, where each set Si represents the vertex vi
of G in this way: Si contains an element Ej for each edge
ej which is connected to vi in G. Besides, let P = n − K.
We can see that the answer of VC for G and K is yes iff the
answer for SP for S1, . . . , Sn and P is yes. Let us prove the
implication from left to right. Let A be a set with less than
or equal to K′ ≤ K vertexes of G such that all edges of G
are connected to at least one vertex in A. Let B = V \A be
the set of P ′ = n −K′ remaining vertexes of G (note that
P ′ ≥ P ). Let B = {va1

, . . . , va
n−K′

}. No pair of vertexes

of B is connected in G (otherwise, the edge connecting both
vertexes would not be connected to some vertex in A, which
is required). By the construction of sets S1, . . . , Sn, two sets
Si and Sj are disjoint iff vi and vj are not connected in
G. Thus, the sets Sa1

, . . . , San−K
are disjoint to each other.

That is, there exist P ′ ≥ P = n−K sets which are disjoint
to each other. Proving the implication from right to left is
trivial if we reverse the previous steps. Also, note that this
reduction takes polynomial time with respect to the size of
the instance of VC.

Polynomial reduction from MAX-3SAT to MC
We polynomially reduce MAX-3SAT to MC as follows. Let
ϕ ≡ c1 ∧ . . . ∧ cm be a propositional logic formula where
each ci is a disjunctive clause of the form ci = l1i ∨ . . . ∨ lki

i ,

where each lji is a literal of the form p or ¬p, being p is
propositional symbol. We create a polynomial-size instance
of MC (i.e. a set of sets and natural numbers K and K′)
from ϕ such that the answer for that instance in SC is yes
iff there exists a valuation that satisfies at least C clauses
of ϕ. Let p1, . . . , pn be the propositional symbols appearing
in ϕ. For each propositional symbol pi, we create two sets:
Spi , which contains an element called Ci for each clause ci
in ϕ which is true if pi is true (because one of the literals
in the clause is pi), and S¬pi , which contains an element
called Ci for each clause ci in ϕ which is true if pi is false
(because one of their literals is ¬pi). Intuitively, taking Spi

represents setting pi to true, whereas taking S¬pi represents
setting pi to false. In order to avoid that we take both sets,
which would not represent a possible valuation, we include
m + 1 elements called P 1

i , . . . , P
m+1
i in both Spi and S¬pi .

Besides, we set K = n and K′ = n · (m+1)+C. Since there
exist m+1 elements of the form Ci, the only way to gather
at least n ·(m+1) elements is taking all elements of the form
P 1
i , . . . , P

m+1
i for all 1 ≤ i ≤ n. The only way to pick all of

these n·(m+1) elements is taking, for each pair Spi and S¬pi ,
at least one of them. Since only K = n sets can be taken, for
each pair at most one of them can be taken. Thus, gathering
at least n·(m+1) elements implies forming a valid valuation.
Moreover gathering K′ = n · (m + 1) + C elements implies
that, in addition to all elements of the form P 1

i , . . . , P
m+1
i ,

the sets selection includes C elements of the form Ci, that

is, it represents a valuation which makes C clauses of ϕ
true. Since this transformation takes polynomial time, it is
a polynomial transformation from MC to MAX-3SAT.

Polynomial reduction from TSP to KN
We polynomially reduce TSP to KN as follows. Let us
consider a TSP instance (G,K) where G = (V,E, c) is an
undirected weighted graph (where V = (v1, . . . , vn) is the
set of vertexes, E = (e1, . . . , em) is the set of edges where
ei ∈ V × V for all 1 ≤ i ≤ m, and c : E → IN is a function
associating a cost to each edge), and K ∈ IN. We derive a
KN instance from it as follows. We construct 2 ·m ·n pairs of
naturals (items) itemi,j,k = (gi,j,k, wi,j,k) where 1 ≤ i ≤ n,
1 ≤ j ≤ m, and 1 ≤ k ≤ 2. The analogy between TSP and
KN is the following: If itemi,j,k = (gi,j,k, wi,j,k) is included
in the KN solution then it will represent, in terms of TSP,
that edge ej = (va, vb) is the i-th edge traversed in the cycle.
If k = 1 then va is the i-th vertex of the cycle and vb is the
((i mod n) + 1)-th vertex, else (i.e. if k = 2) then vb is the
i-th vertex and va is the ((i mod n)+1)-th vertex. The value
of this item, that is gi,j,k, and the weight of this item, that
is, wi,j,k, will be denoted by two binary numbers which are
the concatenation of the following segments of consecutive
bits:

(A1) Both the highest bits of gi,j,k and the highest bits of
wi,j,k consist of n consecutive segments of plog2(2 · n ·
m) + 1q bits each. The definition of these segments is
the same for gi,j,k and wi,j,k. In both cases, all of these
segments are equal to 0 (i.e. all of their bits are 0) but
one: The a-th segment is equal to 1 (that is, all bits
are 0 but the last one, the least weighted one, which
is 1). As we will see later, in any KN solution, for all
1 ≤ h ≤ n the addition of all h-th segments of values
of all items included in the solution will be required
to be at least 1, and the addition of all h-th segments
of weights of all items included in the solution will be
required to be at most 1. Thus, for each graph vertex,
the number of edges departing from each vertex in the
solution (in the order in which they are traversed in
the constructed cycle) will be exactly 1, as it necessar-
ily happens in any TSP solution. Let us note that item
values and weights are treated as single (binary) num-
bers by KN, not as tuples of numbers where each one
is stored in an independent bit segment of the overall
number. However, if we assign appropriate number of
bits of the value/weight of the item to each segment,
then we will guarantee that overflows cannot occur in-
side each segment, and thus a high value in a segment
will never ruin its adjacent segment by producing a
carry bit that invades it. Since each item adds up to
1 to each of these segments, no segment can be higher
than 2·n·m (which is the total number of items). Thus,
overflows are avoided by assigning plog2(2 · n ·m) + 1q
bits to each segment. This number of bits is polyno-
mial with respect to the size of the TSP instance. Since
there are n segments, the amount of bits needed to rep-
resent these segments in values and weights of items is
polynomial too.

(A2) The next highest bits of gi,j,k and the next highest
bits of wi,j,k, from highest significance to lowest sig-
nificance, consist of n consecutive segments of plog2(2 ·
n ·m)+1q bits each. The definition of these segments is



the same as in A1, though now the b-th segment is con-
sidered instead of the a-th one. That is, edges arriving
to each vertex are counted, instead of edges departing
from each vertex.

(B1) The next highest bits of gi,j,k and the next highest bits
of wi,j,k consist, again, of n consecutive segments of
plog2(2 · n · m) + 1q bits each. The definition of these
segments is again the same for gi,j,k and wi,j,k. In both
cases, all of these segments are equal to 0 (i.e. all of
their bits are 0) but one: The i-th segment is equal to
1 (that is, all bits are 0 but the last, which is 1). The
addition of i-th segments of all values and weights will
count the number of edges which depart from the i-th
vertex which is traversed in the formed cycle. So, the
difference with A1 is that, in A1, we count edges leaving
a given vertex, though now we count edges leaving the
vertex reached at a given step, whatever this vertex is.

(B2) The next highest bits of gi,j,k and the highest bits of
wi,j,k consist of n consecutive segments of plog2(2 · n ·
m) + 1q bits each. The definition of these segments is
the same as in B1, though now the ((i mod n) + 1)-th
segment is considered instead of the i-th one. That is,
vertexes reached in the next step are counted, instead
of vertex left in the current step.

(C) The next bits of both gi,j,k and wi,j,k from highest sig-
nificance to lowest significance consist of n consecutive
segments of plog2(2 · (

∑m

q=1 q) + 1)q bits each. Let
these segments be called C-segments. In both gi,j,k
and wi,j,k, all of these segments are equal to 0 (i.e.
all of their bits are 0) but two: For both gi,j,k and
wi,j,k, the i-th segment and the ((i mod n) + 1)-th seg-
ment contain the binary representation of numbers a
and n+1− b respectively (if k = 1), or b and n+1− a
respectively (otherwise, i.e. if k = 2). Though other
segments of values and weights will guarantee that any
KN solution includes, for each graph vertex, exactly
one item representing an edge reaching it and one item
representing an edge leaving it (see A1 and A2, respec-
tively), as well as one edge reaching/leaving the ver-
tex located at each cycle step (see B1 and B2, respec-
tively), this does not guarantee that all KN solutions
will be hamiltonian cycles. For instance, in a graph
with vertexes A,B,C,D,E,F, we could take some edges
which form the cycles A-B-C-A and D-E-F-D, which
does not constitute a hamiltonian graph, though all
vertexes are reached/left by exactly one edge and all
steps are reached/left by exactly one edge (note that,
in the fourth step, we reach A but we leave D). As we
will see later, in any KN solution the addition of all C-
segments of values of all items included in the solution
will be required to be at least n + 1, and the addition
of all C-segments of weights of all items included in the
solution will be required to be at most n + 1. By con-
straints imposed by A1, A2, B1, and B2, the addition
of h-th C-segments of item values and the addition of
h-th C-segments of item weights will add exactly n+1
only if the item (edge) selected for h-th step leaves, ac-
cording to the cycle order, some vertex a (so it adds
n+ 1− a to h-th C-segment of the total value/weight)
and the item (edge) selected for the ((h mod n) + 1)-
th step reaches, according to the cycle order, the same
vertex a (so it adds a to the h-th C-segment in the

total value/weight). In this case, each edge departs
from the vertex reached by the previous edge, and so
any KN solution must represent a single cycle cover-
ing all vertexes of the graph. For each h-th C-segment,
even for all 1 ≤ j ≤ m the items (gh,j,1, wh,j,1) and
(g((h mod n)+1),j,2, w((h mod n)+1),j,2) are included in the KN
solution, the C-segment will never add more than 2 ·∑m

q=1 q, so plog2(2 · (
∑m

q=1 q) + 1)q bits are enough to
avoid the overflow between adjacent segments. Since∑m

q=1 q ≤ m2, we have that plog2(2 · (
∑m

q=1 q) + 1)q ≤

plog2(2 · m2)q ≤ plog2(m
2)q + 1 ≤ 2 · plog2(m)q + 1,

which is polynomial with respect to the size of the TSP
instance. Since there are n C-segments, the amount of
bits needed to represent this kind of segments in values
and weights of items is polynomial too.

(D) There are no more segments in wi,j,k, whereas the next
plog2(2nmM − 2n ·

∑m

q=1 c(eq)) + 1q bits of gi,j,k rep-

resent M − c(ej) in binary code, where M is the cost
of the edge of G with highest cost. Even if all available
items are taken in the KN solution, the addition of
these segments in values of all items will not be higher
than 2nmM − 2n ·

∑m

q=1 c(eq), so plog2(2nmM − 2n ·
∑m

q=1 c(eq)) + 1q bits are enough to avoid an overflow
of this segment into the subsequent segment. Besides,
let us note that plog2(2nm ·M −2n

∑m

q=1 c(eq))+1q ≤

plog2(2nmM) + 1q, which is a polynomial number of
bits with respect to the size of the TSP instance.

So far we have the definition of all items (edges) of the
KN instance derived from the TSP instance. Now, we have
to define the minimum required value, L, and the maximum
weight capacity of the knapsack, W . They are the binary
numbers resulting from the concatenation of the following
binary segments of consecutive bits:

(A1,2) Both the highest bits of L and the highest bits of W
consist of 4n consecutive segments of plog2(2·n·m)+1q
bits each, where all of them are 1 (that is, all bits are
0 but the last one, which is 1).

(B1,2) Both the highest bits of L and the highest bits of W
consist of 4n consecutive segments of plog2(2·n·m)+1q
bits each, where all of them are 1 (that is, all bits are
0 but the last one, which is 1).

(C) The next highest bits of L and the highest bits of W
consist of n consecutive segments of plog2(2·(

∑m

q=1 q)+

1)q bits each, where all of them are the binary repre-
sentation of number n+ 1.

(D) There are no more segments in W , whereas the next
plog2(2nmM−2n ·

∑m

k=1 c(ek))+1q bits of L represent
n · M − K in binary code, where M is the cost of the
edge of G with highest cost.

Let us see that the answer of TSP for G and K is yes iff
the answer of KN for pairs (gi,j,k, wi,j,k), W , and L is yes.

=⇒: If there is in G a hamiltonian cycle whose sequence
of vertexes is vr1 , . . . , vrn , whose sequence of edges is
ej1 , . . . , ejn , and whose cost

∑n

i=1 c(eji) is at most K,
then the selection of items (g1,j1,k1

, w1,j1 ,k1
), . . . ,

(gn,jn,kn
, wn,jn,kn

) (where each ki is 1 if ej = (vjr , vjr+1
)

and is 2 if ej = (vjr+1
, vjr )) fulfills the conditions that

their added weight
∑n

i=1 w1,ji,ki
is at most W and

their added value
∑n

i=1 g1,ji,ki
is at least L. In par-

ticular, in the addition of weights and the addition



of costs of all selected items, all bit segments referred
in A1, A2, B1, B2 before must be equal to 1 (because,
in the TSP solution, each vertex is reached/left once,
and each step is reached/left once too), all segments
referred in C before must be n + 1 (because, in the
TSP solution, the vertex reached at each step is the
vertex left at the next step, which implies that they
add exactly n+1), and all segments referred in D add,
in the addition of values, n · M −

∑n

i=1 c(eji). Since∑n

i=1 c(eji) ≤ K, by the construction of L from K we
have n ·M −

∑n

i=1 c(eji) ≥ L. Thus, the answer for the
KN instance derived from the TSP instance is yes.

⇐=: Let us suppose that, for the KN instance constructed
from the TSP instance, the selection of items (g1,j1,k1

,
w1,j1,k1

), . . . , (gn,jn,kn
, wn,jn,kn

) (where each ki is 1 if
ej = (vjr , vjr+1

) and is 2 if ej = (vjr+1
, vjr )) fulfills

the conditions that their added weight
∑n

i=1 w1,ji,ki
is

at most W and their added value
∑n

i=1 g1,ji,ki
is at

least G. This means that, in the addition of weights
and the addition of costs of all of these items, all seg-
ments referred by A1, A2 equal 1, which means that,
for all vertexes of G, there is one edge reaching it and
one edge leaving it. Besides, in these additions all seg-
ments referred by B1, B2 equal 1, which means that,
for all steps from the first to the n-th, there is one edge
reaching this step and one edge leaving it. In addition,
in these additions all segments referred by C equal n+1,
which means that, for all step, the addition of reached
vertexes and left vertexes is n+ 1. Since a single edge
reaches each step and a single edge leaves each step (by
B1, B2), we have that, for each step, the vertex reached
in the previous step and the vertex left in that step
must coincide; otherwise adding n+1 would not possi-
ble. Besides, since each vertex is reached once and left
once (by A1, A2), vertexes reached at each step are dif-
ferent to each other, and all vertexes are reached in one

step. Thus, we can (uniquely) assign a single vertex to
each step. Since edges connect each step with the next,
edges represented by selected items necessarily repre-
sent form a hamiltonian cycle. Finally, the addition of
all segments referred by D in item values is higher than
or equal to n · M − K, which implies that the cost of
the hamiltonian cycle is less than or equal to K. Thus,
the answer for the TSP instance from which we derived
the KN instance is yes.

Since the size of the KN instance is polynomial with re-
spect to the size of the TSP instance (note that the number
of bits required to represent weights and values in each item
is polynomial, and the number of items is polynomial too),
we conclude that the previous transformation is a polyno-
mial reduction from TSP to KN.

Finally, we illustrate that all segments A1, A2, B1, B2, C in
weights and values are necessary to assure that hamiltonian
cycles are formed. Hence, if some segments are removed,
then the polynomial reduction would not work, so the pro-
posed reduction is not unnecessarily complex. Let us con-
sider a TSP instance where we have vertexes v1, v2, v3, v4
and edges e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v4), and
e4 = (v4, v1). In the KN instance derived from this graph,
we have 32 items, one for each combination of step, edge,
and direction (1 or 2). It is easy to check the following facts:

• item1,1,1, item2,1,2, item3,4,2, item4,4,1 fulfill requirements

imposed by segments B1, B2, C, but they do not form
a hamiltonian cycle.

• item1,4,2, item2,4,1, item3,2,1, item4,2,2 fulfill requirements
imposed by segments A1, A2, B1, B2, but they do not
form a hamiltonian cycle.

• item4,4,2, item4,4,1, item2,2,1, item2,2,2 fulfill requirements
imposed by segments A1, A2, C, but they do not form
a hamiltonian cycle.


