
Applying RFD to construct optimalquality-investment trees 1Pablo Rabanal, Ismael Rodríguez, and Fernando Rubio(Dept. Sistemas Informáticos y ComputaciónFacultad de InformáticaUniversidad Complutense de Madrid, 28040 Madrid, Spainprabanal@fdi.ucm.es, {isrodrig,fernando}@sip.ucm.es)Abstract: River Formation Dynamics (RFD) is an evolutionary computation methodbased on copying how drops form rivers by eroding the ground and depositing sedi-ments. Given a cost-evaluated graph, we apply RFD to �nd a way to connect a givenset of origins with a given destination in such a way that distances from origins to thedestination are minimized (thus improving the quality of service) but costs to buildthe connecting infrastructure are minimized (thus reducing investment expenses). BothRFD and an Ant Colony Optimization (ACO) approach are applied to solve this prob-lem, and some experimental results are reported.Keywords: River Formation Dynamics, Ant Colony Optimization Algorithms,Heuristic Algorithms, NP-hard problems.Categories: I.2.8, G.1.6, F.2.01 IntroductionEvolutionary Computation methods [9, 2, 8, 6, 7] are based on making severalsimple entities evolve, according to simple local-scope rules, in such a way thatglobally e�cient solutions are found. In particular, River Formation Dynamics(RFD) [15, 12] is an evolutionary computation method related to Ant ColonyOptimization (ACO) [5, 4, 3] that was �rstly presented at [13]. Roughly speaking,RFD can be seen as a gradient-oriented version of ACO where, in particular, adi�erent nature-inspired metaphor is considered. RFD is based on copying howthe water forms rivers in nature. The water transforms the environment byeroding the ground when it falls through a high decreasing slope, and it depositscarried sediments when a more �at ground is reached. In this way, altitudes ofplaces are decreased/increased, and paths of decreasing gradient are dynamicallyconstructed. These gradients are followed by subsequent drops to create newgradients, reinforcing the best ones. Eventually, paths consisting in consecutivelytaking the highest decreasing gradients constitute good paths from raining placesto the sea. Though RFD has been applied to NP-hard problems of di�erentnature, such as the Traveling Salesman Problem [13] and the Minimum LoadSequence [12], it has been observed that it performs particularly well in problemsconsisting in creating a kind of covering tree over a given graph (see [15]). These

are problems where the goal is constructing a tree covering some graph nodes, insuch a way that a given property is met or a given value is minimized/maximized.Adapting RFD to these problems is particularly natural to this method: Weassign the lowest altitude to one of the nodes to be covered (it becomes thesea) and we make drops rain at the rest of nodes to be covered. Eventually, thegravity makes drops form a tree of joining tributaries from departure points tothe sea.In this paper we take advantage of this feature of RFD to solve the followingproblem: Given (a) a cost-evaluated graph, i.e. a graph where costs are assignedto edges; (b) a subset of nodes required to be covered called origin nodes; and (c)a speci�c node called destination node, we construct a tree such that (i) pathsconnecting origin nodes with the destination node through the tree are as shortas possible; and (ii) the tree itself is as small as possible. Trees that are optimalwith respect to (i) are not optimal with respect to (ii) nor the other way around,so a kind of tradeo� between both goals will be pursued instead. Let X be theaddition of costs from each origin node to the destination through the tree, andlet Y be the cost of the tree itself (i.e. the addition of costs of edges formingthe tree). Given some 0 ≤ α ≤ 1, our goal will be to minimize the expression
α · X + (1 − α) · Y .The previous minimization problem appears in any engineering domain wherea set of origins must be joined with a destination d in such a way that, on theone hand, distances from each origin to d are minimized (in order to improvethe quality of service, QoS) and, on the other hand, the cost of constructing theconnecting infrastructure is minimized too (which reduces investment expenses,IE). In particular, we de�ne the relative weight of QoS and IE in our objectiveby selecting an appropriate value of the α parameter. Let us suppose that wewish to construct a local area network for a new complex of facilities, in such away that computers in all o�ces and buildings are connected to the companycentral server. A tree topology is chosen for the network due to the ease to furtherextend such a topology with new switches/routers/networks without needing tochange networking devices (see the role of the tree topology in networking ine.g. [10, 11]). On the one hand, distances from each node to the central nodeshould be minimized to improve the QoS. On the other hand, the length of thenew wiring infrastructure should be decreased to reduce the IE. Similarly, let usconsider that some cities must be joined with a capital city through a highwaynetwork. We pursue a tradeo� between minimizing distances from each city tothe capital and minimizing the cost of constructing the tree of highways.In order to improve our capability to express complex situations, we gener-alize the proposed problem as follows: We consider that the cost of traversing agiven graph edge depends on the path traversed so far. That is, if we traverse eafter following a path σ then the cost of adding e to the path is ce,σ; in general,

we have ce,σ 6= ce,σ′ for any other path σ′. For instance, this allows to considerthat the QoS and IE costs of an edge depend on the origin of the path we havetraversed before reaching the edge. Coming back to our previous example, theQoS of an edge denoting a fast but not very reliable wire is not high for transmit-ting data coming from a node typically running real-time applications (in thiscase, meeting some minimal speed in all situations is critical). However, the QoSof this edge may be high for transmitting data coming from an e-mail server (ahigh bandwidth is good for transmitting a huge amount of e-mails, though it isacceptable if the connection is rarely down). In the highway network example,the IE of building a speci�c highway stretch may depend on whether we expectit to be typically traversed by trucks or not.Let us denote the proposed problem by QoS-IE Tree problem (QIT). Despiteof the applicability of QIT to di�erent engineering domains (networking, trans-portation, circuit design, assembly line design, etc), to the best of our knowledgethis problem has not been de�ned or studied before in the literature. We willformally de�ne QIT and we will show that it is an NP-complete problem (a proofconsisting in a polynomial reduction from 3-SAT will be given).2 Thus, solving
QIT in practice requires applying a suitable heuristic method. We will show thatRFD is a good choice to solve QIT indeed, and we will report some experimentalresults where the RFD method and an ACO approach are applied to solve QIT.The rest of the paper is structured as follows. In the next section we presentthe general RFD scheme. Then, the QIT problem is formally de�ned in Section 3,where we prove its NP-completeness. Afterwards, in Section 4 we present animplementation of the algorithm and we compare the results of our methodwith those obtained using an ACO method. Finally, in Section 5 we present ourconclusions.2 Brief Introduction to River Formation DynamicsIn this section we brie�y introduce the basic structure of River Formation Dy-namics (RFD) (for further details, see [13, 15]). Given a working graph, we asso-ciate altitude values to nodes. Drops erode the ground (they reduce the altitudeof nodes) or deposit the sediment (increase it) as they move. The probabilityof the drop to take a given edge instead of others is proportional to the gradi-ent of the down slope in the edge, which in turn depends on the di�erence ofaltitudes between both nodes and the distance (i.e. the cost of the edge). Atthe beginning, a �at environment is provided, that is, all nodes have the samealtitude. The exception is the destination node, which is a hole (the sea). Drops
2
QIT is NP-hard because (a) edge costs depend on the path traversed so far and(b) trees are not required to cover all nodes but only some of them. Each of (a) and(b) is, by its own, a su�cient condition for NP-hardness. The proposed proof will bebased on reason (a), and reason (b) will not be required to be exploited.

are unleashed (i.e. it rains) at the origin node/s, and they spread around the �atenvironment until some of them fall in the destination node. This erodes adja-cent nodes, which creates new down slopes, and in this way the erosion processis propagated. New drops are inserted in the origin node/s to transform pathsand reinforce the erosion of promising paths. After some steps, good paths fromthe origin/s to the destination are found. These paths are given in the form ofsequences of decreasing gradient edges from the origin to the destination. Severalimprovements are applied to this basic general scheme (see [13, 15]).Compared to a related well-known evolutionary computation method, AntColony Optimization, RFD provides some advantages. On the one hand, localcycles are not created and reinforced because they would imply an ever decreasingcycle, which is contradictory. Though ants usually take into account their pastpath to avoid repeating nodes, they cannot avoid to be led by pheromone trailsthrough some edges in such a way that a node must be repeated in the nextstep.3 However, altitudes cannot lead drops to these situations. Moreover, sincedrops do not have to worry about following cycles, in general drops do notneed to be endowed with memory of previous movements, which releases somecomputational memory and reduces some execution time. On the other hand,when a shorter path is found in RFD, the subsequent reinforcement of the pathis fast: Since the same origin and destination are concerned in both the old andthe new path, the di�erence of altitude is the same but the distance is di�erent.Hence, the edges of the shorter path necessarily have higher down slopes andare immediately preferred (in average) by subsequent drops. Finally, the erosionprocess provides a method to avoid ine�cient solutions because sediments tend tobe cumulated in blind alleys (in our case, in valleys). These nodes are �lled untileventually their altitude matches adjacent nodes, i.e., the valley disappears. Thisdi�ers from typical methods to reduce pheromone trails in ACO: Usually, thetrails of all edges are periodically reduced at the same rate. On the contrary, RFDintrinsically provides a focused punishment of bad paths where, in particular,those nodes blocking alternative paths are modi�ed.When there are several departing points (i.e. it rains at several points), RFDdoes not tend in general to provide the shortest path (i.e. river) from each pointto the sea. Instead, as it happens in nature, it tends to provide a tradeo� betweenquickly gathering individual paths into a small number of main �ows (whichminimizes the total size of the formed tree of tributaries) and actually formingshort paths from each point to the sea. For instance, meanders are caused bythe former goal: We deviate from the shortest path just to collect drops froma di�erent area, thus reducing the number of �ows. On the other hand, newtributaries are caused by the latter one: By not joining the main �ows, we can
3 Usually, this implies either to repeat a node or to kill the ant. In both cases, the lastmovements of the ant were useless.

form tailored short paths from each origin point.4 These characteristics makeRFD a good heuristic method to solve problems consisting in forming a kind ofcovering tree [14], which motivates using RFD to solve QIT.Several improvements are applied to the basic general scheme. In particular,drops coming from di�erent origins and coinciding at the same node are joinedinto a bigger drop, which allows to reduce the number of individual drop move-ments. Besides, in order to avoid the formation of local optima, drops are givena small probability to climb up slopes, and this probability decreases with time(see [13] for further details).3 Formal Problem De�nitionIn this section we formally de�ne QIT, the problem we will address in Section 4by means of RFD and ACO. As we said before, QIT consists in �nding a treeover a given graph such that (a) all nodes belonging to a given subset of graphnodes (called origin nodes) are connected to a given node (destination node),and (b) the sum of distances from origin nodes to the destination node, as wellas the size of the tree, are as small as possible (where the relative weight of theformer measure is denoted by α and the latter by 1−α). Besides, we will be ableto consider that the cost of taking an edge depends on the path traversed beforetaking the edge. In order to denote this dependance, we assume that the cost ofa path of edges e1, . . . , en from a given origin node o to a given destination node
d depends on the evolution of a variable through the path. Initially, a value vois assigned to this variable at node o. Then, the cost added to the path due tothe inclusion of edge e1 is an amount depending on vo. After traversing e1, thevalue of the variable is updated to a new value v1. Next, the cost of adding e2to the path depends on v1. After taking e2, the value of the variable is updatedagain, and the process continues so on until we obtain the whole cost of the path
e1, . . . , en.Following this idea, a variable-cost graph can be de�ned by attaching someinformation to a standard graph. Let us consider a set of origin nodes (in partic-ular, this set could include all nodes of the graph). Then, (1) we assign an initialvalue to each origin node; (2) we assign a cost function to each edge. Dependingon the value of the variable just before traversing the edge, taking the edge addsa di�erent cost; and (3) we assign a transformation function to each edge. Giventhe value of the variable before traversing the edge, it returns the new value aftertaking it.Let us suppose that a variable-cost graph de�ned in these terms is providedand a tree t over this graph, connecting all origin nodes with the destination
4 As we will see later, we can make RFD tend towards either of these choices bychanging a single parameter.

node, is given. On the one hand, the QoS cost of t is the addition of distancesfrom each origin node to the destination. Paths departing from di�erent originnodes could share some edges in the tree (in particular, di�erent sequences ofedges could share some su�xes). Let us note that, in general, the cost of a sharededge is di�erent for each path because the value of the variable when the edge isreached may be di�erent for each path. On the other hand, the IE cost of tree tis the addition of costs of edges included in the tree. In this case, the cost of anedge e is computed as follows. Let us consider all paths of t connecting an originnode with the destination node and including edge e. The cost added by edge eto the IE cost of t is the average of the cost of e for all of these paths. Let usnote that, in both problems, trees are not required to include all nodes from theoriginal graph, but only the origin nodes and the destination node. Thus, othernodes of the graph are included in the tree only if they are suitable to (cheaply)connect origins and the destination. In particular, if all nodes are considered asorigin nodes then the resulting tree must include all nodes indeed.De�nition 1. A variable-cost graph is a tuple G = (N, O, d, V, A, E) where:� N is a �nite set of nodes,� O ⊆ N is the set of origin nodes,� d is the destination node,� V = {v1, . . . , vn} is a �nite set of values,� A : O −→ V is the initial value function, that is, a function assigning aninitial value to each origin node.� E is the set of edges. Each edge e ∈ E is a tuple (n1, n2, C, T) where n1, n2 ∈

N are the origin and destination nodes, respectively, and
• C : V −→ IN is the cost function of e. Given a value in V denoting thecurrent value of the variable, it returns the cost of traversing e.
• T : V −→ V is the transformation function of e. Given the current valueof the variable, it returns the new value assigned to the variable if e istraversed.Paths are sequences of edges departing at an origin node and arriving to thedestination node. Formally, a path of G is a sequence of edges σ = (e1, . . . , ek)with ei = (ni, n

′
i, Ci, Ti) ∈ E for all 1 ≤ i ≤ k such that n1 ∈ O, n′

k = d, and forall 1 ≤ i ≤ k − 1 we have n′
i = ni+1. The cost of σ, denoted by c(σ), is equal to

C1(A(n1))+C2(T1(A(n1)))+C3(T2(T1(A(n1))))+. . .+Ck(Tk−1(. . . (T2(T1(A(n1)))) . . .))The term denoting the cost of traversing ei in the previous expression, that is
Ci(Ti−1(. . . (T2(T1(A(n1)))) . . .)), will be denoted by cei

(σ). In a notation abuse,we will write e ∈ σ if e = ei for some 1 ≤ i ≤ k.

We say that G′ = (N ′, O, d, V, A, E′) with N ′ ⊆ N and E′ ⊆ E is a tree of Gif for all o ∈ O there exists a single path σ = (e1, . . . , ek) of G′ departing from o,that is, such that e1 = (o, n, C, T) for some n, C, T . For each o ∈ O, we denoteby σo the unique path of G′ departing from o.The QoS cost of G′, denoted by qos(G′), is equal to ∑

o∈O c(σo). The IE costof G′, denoted by ie(G′), is equal to ∑

e′∈E′

∑

{c
e′(σo)|o∈O,e′∈σo}

|{c
e′(σo)|o∈O,e′∈σo}|

. utNow we are provided with all the needed machinery to formally de�ne theproblem considered in this paper. As it is usual in Complexity Theory, thisminimization problems is de�ned in terms of its equivalent decision problem.De�nition 2. The problem of the Quality of Service-Investment Expenses Tree,denoted by QIT, is stated as follows: Given a variable-cost graph G, a rationalnumber α with 0 ≤ α ≤ 1, and a natural number K, is there any tree G′ of Gsuch that α · qos(G′) + (1 − α) · ie(G′) ≤ K? ut

QIT generalizes other known problems consisting in constructing a kind ofcovering tree from a graph by (a) considering that both the distances to a givendestination node and the size of the tree itself matter; and (b) considering thatthe cost of traversing each edge depends on the path traversed before taking theedge. The past path is abstracted by the value of the variable, which particular-izes the cost of each edge for each path. Let us note that, in formal terms, wedo not need to consider several variables in the problem de�nition because thedependence on past paths can be denoted by using a single variable. As far aswe are concerned, the tree-construction problem proposed in this paper has notbeen considered in the literature before. Hence, its properties must be analyzed.Next we prove the NP-completeness of QIT, consisting in constructing a poly-nomial reduction from 3-SAT. This implies that exponential times are (veryprobably) required to optimally solve them. Thus, sub-optimally solving it bymeans of heuristic algorithms like those considered in this paper is an appropri-ate choice. The proof is structured as follows. First, we prove that QIT belongsto the NP class. Next, we prove that a well-known NP-complete problem, 3-SAT,can be polynomially reduced to QIT, which implies that QIT belongs to theNP-complete class.Lemma3. QIT ∈ NP.Proof. We prove that QIT can be solved in polynomial time by a non-deterministicalgorithm. Given a variable-cost graph G, a rational number α with 0 ≤ α ≤ 1,and a natural number K, this algorithm non-deterministically constructs a sub-graph G′ of G and next deterministically checks whether (a) G′ is a tree of G,and (b) we have δ = α · qos(G′) + (1 − α) · ie(G′) ≤ K. Both operations areperformed in polynomial time with respect to the size of G, α and K (measured

in bits required to represent them). Given a subgraph G′ of G, checking whether
G′ is a tree of G requires polynomial time. Next, if G′ is a tree of G, calculating
δ requires traversing all paths connecting each origin node to the destinationnode and adding the costs of all of these paths due to qos(G′) and ie(G′). Thelength of each of these paths is polynomial, so calculating the cost of a pathrequires polynomial time. Since G′ is a tree, for each origin node there exists asingle path connecting it to the destination node. Thus, the number of paths tobe considered is polynomial. Hence, we can check whether the property δ ≤ Kholds or not in polynomial time. utIn order to prove the NP-completeness of QIT, we construct a polynomialreduction from a known NP-complete problem to QIT. In particular, we considerthe well-known 3-SAT problem. Next we introduce some notions related to thisproblem as well as the problem itself.De�nition 4. The 3-SAT problem is stated as follows: Given a propositionallogic formula ϕ expressed in conjunctive normal form where each disjunctiveclause has at most 3 literals, is there any valuation ν satisfying ϕ?Let ϕ ≡ (l11 ∨ l12 ∨ l13) ∧ . . . ∧ (lk1 ∨ lk2 ∨ lk3) be an input for 3-SAT. Wedenote by props(ϕ) = {p1, . . . , pn} the set of propositional symbols appearingin ϕ. We denote the i-th disjunctive clause of ϕ by ci, that is, ci ≡ li1 ∨ li2 ∨ li3.We say that ci holds when pj is equal to x ∈ {>,⊥}, formally denoted byh(pj , x, ci), if for all valuation ν ful�lling ν(pj) = x we have that ci evaluatesto >. That is, h(pj ,>, ci) i� lim ≡ pj for some 1 ≤ m ≤ 3, and h(pj ,⊥, ci) i�
lim ≡ ¬pj for some 1 ≤ m ≤ 3. utWe will prove QIT ∈ NP-complete as follows. Given an input ϕ of 3-SAT, weshow that we can construct an input (G, α, K) of QIT from ϕ in polynomial timein such a way that the solution of 3-SAT for ϕ is yes i� the solution of QIT for thevariable-cost graph G, the rational number α, and the natural number K is yes.By the de�nition of the NP-complete class, this implies QIT ∈ NP-complete.In particular, if we were able to solve QIT in polynomial time then we couldsolve the NP-complete problem 3-SAT in polynomial time as well: We could justtransform ϕ into (G, α, K), next call the algorithm that solves QIT in polynomialtime, and �nally return the answer given by it.Before formally presenting the construction of (G, α, K) from ϕ, let us in-formally introduce it. Each origin node of the constructed graph G represents adisjunctive clause of ϕ. From each of these origin nodes, a sequence of edges al-lows to traverse some nodes one after each other (the same sequence for all originnodes) where each node represent a proposition symbol appearing in ϕ. Each ofthese proposition nodes is connected to the next proposition node through twoedges. One of them represents valuating the corresponding proposition symbol

to >, while the other edge represents giving it the ⊥ value. Depending on theorigin node where we come from (that is, depending on the disjunctive clausewe are considering), taking the edge that evaluates the proposition symbol totrue or to false adds a di�erent cost to the path. This cost is 1 unless the propo-sition valuation represented by the edge allows to make true the disjunctiveclause for the �rst time in the path. In this case, the edge adds 0 to the overallpath cost. In order to keep track of this information, the value of the variableof the variable-cost graph G codi�es the considered clause, as well as whetherthis clause necessarily holds (according to the valuation represented by the pathtraversed so far). In particular, variable values follow the form vj,w where j isan index denoting a clause and w ∈ {already>, notyet>}. A value vj,w denotesthat the current path departed at an origin node denoting the j-th clause of ϕ,and w = already> denotes that the j-th clause must be true regardless of thevaluation of the remaining proposition symbols (because the valuation implicitlyde�ned by the path traversed so far necessarily makes it true). Otherwise, weconsider w = notyet>. After the last proposition node is traversed, the destina-tion node of G reached.Recall that QIT seeks for a tree where a given linear combination of (a) theaddition of costs from each origin node to the destination node and (b) theaddition of average edge costs, is minimal (in particular, α · qos(G′) + (1 − α) ·

ie(G′)). Let us consider that α is given the value 1 in the QIT problem instancewe construct from ϕ. In this case, QIT seeks for a tree where the addition of costsfrom each origin node to the destination node is minimal (let us note that, fromnow on, a similar construction could be given for the case where α = 0). Giventhe variable-cost graph G, a tree of G can include only one of the edges thatconnect each proposition node to the next proposition node (otherwise, it wouldnot be a tree). Hence, given G, trees computed by QIT represent valuations ofproposition symbols. Since α = 1, QIT searches for the cheapest tree connectingall origin nodes to the destination node. Thus, QIT actually seeks for a treeallowing to make true as more clauses as possible. In particular, we will provethat the cost of the cheapest tree found by QIT is under a given threshold if andonly if all clauses are true under the constructed valuation, that is, i� ϕ holds.It turns out that, due to the speci�c form of G, �nding a tree where the additionof costs from each origin to the destination is minimal (i.e. considering α = 1)is equivalent to �nding a tree where the addition of average costs of edges isminimal (i.e. considering α = 0): Due to the de�nition of G, in both cases thetree cost is minimized if the valuation represented by the tree makes true asmore clauses as possible. Hence, we can also de�ne a threshold such that thecost of the minimum tree for QIT assuming α = 0 is under it i� ϕ is satis�able.Theorem5. QIT ∈ NP-complete.Proof. Due to Lemma 3, if we can polynomially reduce 3-SAT to QIT then

QIT ∈ NP-complete. Let ϕ denote a conjunctive normal form ϕ ≡ c1 ∧ . . . ∧

ck where props(ϕ) = {p1, . . . , pn}. We construct a variable-cost graph G =

(N, O, d, V, A, E) as follows:� N = {clause1, . . . , clausek, prop1, . . . , propn, end},� O = {clause1, . . . , clausek},� d = end,� V = {vj,w|1 ≤ j ≤ k ∧ w ∈ {already>, notyet>}}� For all clausei ∈ O we have A(clausei) = vi,notyet>.� E = {(clausei, prop1, C, T)|1 ≤ i ≤ k ∧ ∀ v ∈ V : (C(v)=0 ∧ T (v)=v)}
⋃



















































propi,

propi+1,

Cx
i ,

T x
i









∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ≤ i ≤ k − 1 ∧ x ∈ {>,⊥} ∧

Cx
i (vj,notyet>) =

{

0 if h(pi, x, cj)

1 otherwise

}

∧

Cx
i (vj,already>) = 1 ∧

T x
i (vj,notyet>) =

{

vj,already> if h(pi, x, cj)

vj,notyet> otherwise

}

∧

T x
i (vj,already>) = vj,already>











































⋃



















































propn,

end,

Cx
n ,

T x
n









∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x ∈ {>,⊥} ∧

Cx
n(vj,notyet>) =

{

0 if h(pn, x, cj)

1 otherwise

}

∧

Cx
n(vj,already>) = 1 ∧

T x
n (vj,notyet>) =

{

vj,already> if h(pn, x, cj)

vj,notyet> otherwise

}

∧

T x
n (vj,already>) = vj,already>









































We show that constructing G from ϕ requires polynomial time. This propertyis a consequence of the following conditions:(a) |N | is equal to the number of clauses of ϕ plus the number of propositionsymbols of ϕ plus 1 (the end node), which is polynomial with respect to thesize of ϕ.(b) |V | is equal to the number of disjunctive clauses of ϕ multiplied by 2. Thus,for each edge in E, de�ning functions C and T by means of extensionalarrays (relating each input value with its output value) requires polynomialsize and time.(c) |E| is equal to the number of clauses plus the number of propositions multi-plied by 2, which is polynomial with respect to the size of ϕ.

Finally, we prove that the answer of QIT for the graph G, the QIT objectiveparameter α = 1, and a threshold K = k · (n − 1) is yes i� ϕ is satis�able.That is, we prove that ϕ is satis�able i� there exists a tree G′ of G such that
α ·qos(G′)+(1−α) · ie(G′) = qos(G′) ≤ k · (n−1). We consider each implicationof this statement:
⇒: Let us note that a tree G′ of G must include all edges connecting each node

clausei with prop1. All of these edges have 0 cost. Besides, for each pair ofedges connecting each node propi with node propi+1, the tree G′ must includeexactly one of these edges. Let us consider a valuation ν such that for all
1 ≤ i ≤ n we have ν(pi) = > if G′ includes the edge (propi, propi+1, C

>
i , T>

i)and pi = ⊥ if G′ includes (propi, propi+1, C
⊥
i , T⊥

i). For all clausei ∈ O, thecost of the path from clausei to end in G′ is n − 1 if ν makes true ci, and
n otherwise. This is because if ν makes ci true then all edges in the pathbut one add 1 cost to this path. The exception is the edge that makes true
ci for the �rst time, which adds 0 cost. If ϕ is satis�able then there exists avaluation ν′ making true all clauses ci. Thus, there exists a way to choosethe edges connecting each propi with propi+1 in such a way that, for all
clausei, the unique path from clausei to end has n − 1 cost. In this case,
qos(G′) = k · (n − 1).

⇐: Let us consider a valuation ν de�ned as in the previous case. If qos(G′) is
k · (n−1) then the cost from each clausei to end must be n−1. This impliesthat, for each 1 ≤ i ≤ n, ν makes true the clause ci. Hence, ϕ is satis�able.Though reducing the 3-SAT instance to a QIT instance with α = 1 is enoughto prove the NP-completeness of QIT, let us note that if we considered α = 0 thenwe could make an alternative proof with very similar arguments. In particular,we could construct a polynomial reduction from 3-SAT to QIT by using the samevariable-cost graph G de�ned before. In this case, we have that ϕ is satis�able i�there exists a tree G′ of G such that α ·qos(G′)+(1−α) ·ie(G′) = ie(G′) ≤ n−1.Let us recall that if α = 0 then the cost of each edge e of G′ is the average costof e for all paths traversing e. Due to the structure of G, it is easy to check that

ie(G′) = qos(G′)
k

. Thus, ϕ is satis�able i� ie(G′) = k·(n−1)
k

= n − 1. utIt is worth to point out that the goal of the previous construction is provingthe NP-completeness of QIT, not providing a suitable graph construction tosolve 3-SAT by means of RFD or ACO. In particular, if the variable-cost graph
G were used to �nd solutions to 3-SAT by means of RFD, then we would needto introduce a barrier node at each edge connecting a node propi with propi+1(see details about barrier nodes in [13]).

4 QIT Implementation and ResultsIn this section we describe the application of RFD to solve QIT and we reportsome experimental results. Furthermore, we compare the results obtained by us-ing our algorithm and those obtained by using an ACO method. All experimentswere performed in an Intel Core Duo T7250 with a 2.00 GHz processor.Let us consider the application of RFD to the QIT problem. We make rainat all origin nodes, and the destination node is the sea. After executing RFD forsome time, for each graph node we only take the edge with the highest decreasinggradient, and we discard the rest of edges. Since a path of decreasing gradientscannot lead from a node to itself, the (unique) paths from each origin node to thedestination node remaining after the removal must depict a tree indeed. As dis-cussed before, natural rivers do not tend to form solutions where each drop goesto the sea through its shortest path, but they tend to form grouped solutions.This allows RFD to implicitly deal with path con�icts, i.e. situations where, ata given node, two drops coming from di�erent origins have di�erent preferencesregarding which edge should be taken next (because costs are di�erent for eachof them; recall that we are considering that costs depend on previously followedpaths). In these situations, the tendency of RFD to form grouped solutions im-plicitly leads to forming paths with a suitable cost tradeo� between availablechoices: After some steps, the erosion will reinforce more strongly the slopesproviding the lowest overall cost. In addition, the tendency of drops to join eachother is very appropriate to optimize the IE cost of the tree: If drops tend tojoin the main �ow, instead of following their respective individual shortest paths,then less edges are added to the tree and the tree cost is reduced.Interestingly, we can adapt RFD to optimize the QoS cost just by changinga parameter: If we reduce the erosion caused by high �ows, then the incentive ofdrops to join each other is partially reduced, and thus each drop tends to followits own shortest path. For instance, we can achieve this e�ect by changing theerosion rules in such a way that, if n drops traverse an edge, then they makethe erosion e�ect of e.g. a single drop, rather than the e�ect of n drops. In thiscase, grouped paths are promoted by the method only when they are requiredto solve path con�icts. Moreover, by considering intermediate erosion e�ects, weconstruct trees partially �tting into the objectives of both problems. Thus, inorder to �nd a tradeo� between optimizing QoS and optimizing IE as requiredby α, we just have to set an appropriate erosion e�ect value.Regarding the ACO implementation, let us note that solving QIT is not natu-ral for ACO. For instance, ACO does not provide an implicit way to deal with theconvergence of paths. Let us consider a node where two paths coming from dif-ferent origin nodes converge. Ants coming from an origin node could be confusedby pheromone trails and go on to the other origin node, rather than following tothe destination node, because pheromone trails are not directed (on the contrary,

in RFD formed edge gradients are implicitly directed towards the destination).In order to solve this problem in ACO, a di�erent kind of pheromone trail willbe considered for ants departing at each origin node, and ants will follow onlytheir own pheromone kind.5 After the algorithm is executed for some time, pathsformed from each origin point are combined to form a tree. If paths constructedfor two origin points reach the same node and next leave it through a di�erentedge, then only the path with highest pheromone trail leaving the node (consid-ering all kinds of pheromone) is added to the solution tree.This approach is suitable for �nding trees in such a way that paths fromeach origin to the destination are short, i.e., for optimizing with respect to QoS.However, a di�erent strategy must be considered to �nd good trees in terms oftheir overall cost, i.e. in terms of IE, because this strategy does not promotejoining paths to reduce the number of edges to be included in trees. We willoptimize IE costs in ACO by using a strategy inspired by [1]. In particular, asingle pheromone kind is considered for all ants. This allows pheromone trails ofa given path to attract ants coming from a di�erent path, which in turn allowsto join di�erent paths together and reduces IE costs. This leads to the problemcommented before: Ants coming from a path can get confused at a convergencenode and go on through the other path. Moreover, ants can be led by pheromonetrails in such a way that it is impossible not to repeat a node next, thus makingthe path traversed so far useless.Thus, the strategy followed by ACO to optimize IE costs is very di�erentfrom the strategy followed to optimize QoS. This contrasts with RFD, wherea simple and modular modi�cation (a change on the erosion e�ect parameter)allows it to easily reach any required tradeo� between QoS and IE optimization.If both QoS costs and IE costs must be optimized in ACO (i.e. if 0 < α < 1),then we combine the two strategies proposed in ACO to optimize QoS and IE,respectively, which complicates the algorithm execution. Based on the experi-mentation with di�erent approaches, the following mechanism is followed. Thealgorithm is executed in two stages. First, ACO is executed according to the QoSoptimizing strategy described before, i.e. we consider di�erent pheromone kinds.After some execution time, only edges whose pheromone trail reaches a giventhreshold are taken in this graph, and next ACO is executed for the resultinggraph according to the IE optimizing strategy given before, i.e. we consider asingle pheromone kind. Depending on the value of α, the duration of each ofthese stages is enlarged/reduced. This contrasts with the RFD method, where athe same strategy, parameterized by the erosion e�ect, is followed in all cases.Three randomly generated variable-cost graphs with 100, 200, and 300 nodesare used in experiments as benchmark problems. In these graphs, each node isconnected to approximately 40% of the rest of nodes. Variables used to par-
5 This is equivalent to launching a di�erent ACO execution for each origin point.

ticularize the cost of edges can take up to 5 possible values. Cost functionsand transformation functions attached to edges are randomly generated. In par-ticular, features such as monotonicity or injectivity are not required in thesefunctions. Table 1 shows the results of the experiments, where the input of bothalgorithms were the graphs described before.Let us analyze the results shown in Table 1. When we consider α = 1 (thatis, when the weight of QoS in the measure to be optimized is 100% and theweight of IE is 0%), RFD obtains better average results than ACO, althoughthe di�erence is not big. In fact, the best solution found by ACO in 10 executionsis better than the best solution found by RFD in the same number of executions.Regarding the case where α = 0 (i.e. only costs due to IE are considered) theadvantage of RFD over ACO is greater than in the α = 1 case. The reason is thatACO is well suited for searching short paths between given points (in fact, thebasic ACO method is devoted to �nd short paths between two points indeed),though it is not very suitable for joining di�erent short paths into a main �ow,in such a way that the size of the constructed tree is reduced. On the contrary,this goal is natural to RFD.The greatest advantage of RFD over ACO is observed in the case of interme-diate α values, that is, when a tradeo� between QoS and IE is pursued. Whenwe need to �nd appropriate trees with respect to QoS and IE, RFD clearlyoutperforms ACO in all situations. In fact, the only case where ACO obtainsacceptable results is in the smallest graph (100 nodes), where the advantage ofRFD is not too big. However, when the problem size is larger (200 or 300 nodes),the di�erence of performance between both methods becomes larger. Thus, thescalability of RFD in these cases is much better than the scalability of ACO.The main reason for obtaining these results is basically the same reasonwhy RFD works better than ACO to �nd good trees with respect to IE costs:ACO is well suited to �nd short paths, though the goal of constructing groupedsolutions towards a common destination is more natural in RFD. Moreover,ACO results are worse when a QoS-IE combination is required than when onlyan optimization with respect to IE is required. It could be argued that a QoS-IE combination should perform better for ACO because of the QoS part of theoptimization goal, which is a natural goal for ACO. However, the strategy neededto optimally cover some nodes with respect to both measures is more complexthan in the case of considering only IE. On the other hand, seeking for a tradeo�between QoS and IE is easy for RFD because a simple parameter adjustmentallows RFD to de�ne its tendency towards each kind of tree.In order to analyze the time needed to �nd good solutions, let us considerFigures 1�3. These �gures show the evolution of the quality of the solutions foundby ACO and RFD along time in a single execution using a 300 nodes graph. Inall cases, ACO �nds a �rst solution faster than RFD, although RFD always

Figure 1: QIT results for a 300 nodes graph with QoS = 100 and IE = 0surpasses ACO after some time. The reason is that RFD performs a deeperexploration of the graph before �nding the �rst solution, but then it behavesbetter in the mid and long terms. Regarding the comparison between the four�gures we can see that, when only QoS costs are considered (see Figure 1), ittakes longer for RFD to surpass the quality of the solutions found by ACO.However, when only IE costs are considered (see Figure 3), RFD surpasses ACOin less time. Moreover, when we try to optimize with respect to a combination ofboth measures (see Figures 2 and 4), the time needed by RFD to surpass ACOis even smaller.The reasons for these results are similar. On the one hand, RFD is bettersuited than ACO for creating covering trees where individual paths must becombined and grouped into common paths. On the other hand, ACO is faster insimpler cases (such as when only QoS is considered), and it gets slower when itdeals with more complex problems such as only considering IE, or considering abalance between QoS and IE. We conclude that RFD is a better choice when theproblem to be solved requires to construct a solution where individual solutionsmust be (partially) gathered.

Figure 2: QIT results for a 300 nodes graph with QoS = 75 and IE = 255 Conclusions and Future WorkIn this paper we have applied a River Formation Dynamics method to �nd a wayto connect a set of origins with a given destination in such a way that (a) dis-tances from origins to the destination are minimized (which improves the qualityof service) and (b) costs to build the connecting infrastructure are minimized(which reduces investment expenses). Though this problem has applications toseveral engineering domains (networking, transportation, circuit design, assem-bly line design, etc), to the best of our knowledge it has not been de�ned orstudied in computational terms before. We have shown its NP-completeness,and we have solved it by means of both an RFD approach and an ACO ap-proach. We have observed that the QIT problem �ts particularly well into theRFD scheme. This is because RFD naturally tends to construct covering treeswhere, on the one hand, paths from raining points to the sea are short (in partic-ular, tributaries providing partially tailored solutions from each origin point areformed) and, on the other hand, the size of the tree is reduced (in particular, me-anders deviate from the shortest path to cover other areas without the necessityof further branching). The natural tendency of drops in RFD towards the lowestpoint avoids that drops get confused at points where two paths join together.This contrasts with ACO: If an ant reaches a convergence point, it could start

Figure 3: QIT results for a 300 nodes graph with QoS = 0 and IE = 100to climb up the other tributary rather than going down through the main down�ow. This forces to modify the ACO scheme as explained in the previous section.On the contrary, no rule modi�cation is required in RFD to make drops go down.Thus, handling several paths and properly composing them is a natural task toRFD. As commented in Section 2, other advantages of RFD over ACO are thefollowing: Cycles are implicitly avoided; shorter paths are quickly reinforced; andsediment cumulation provides a focalized way to punish bad paths. The resultsshown in experiments described in Section 4 corroborate the usefulness of thesefeatures in the RFD approach.As future work, we plan to create an hybrid ACO-RFD method to try toobtain the best of both worlds. Let us remark that ACO typically requires lesstime to �nd a solution, though RFD typically behaves better in the long term.Thus, an hybrid method could obtain both advantages.References1. T.N. Bui and C.M. Zrncic. An ant-based algorithm for �nding degree-constrainedminimum spanning tree. In GECCO'06, pages 11�18. ACM Press, 2006.2. L. Davis, editor. Handbook of genetic algorithms. Van Nostrand Reinhold NewYork, 1991.3. M. Dorigo. Ant Colony Optimization. MIT Press, 2004.

Figure 4: QIT results for a 300 nodes graph with QoS = 25 and IE = 754. M. Dorigo and L.M. Gambardella. Ant colonies for the traveling salesman problem.BioSystems, 43(2):73�81, 1997.5. M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony ofcooperating agents. IEEE Transactions on Systems, Man and Cybernetics, PartB, 26(1):29�41, 1996.6. A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer,2003.7. K.A. De Jong. Evolutionary computation: a uni�ed approach. MIT Press, 2006.8. J. Kennedy and R. Eberhart. Particle swarm optimization. Proceedings of IEEEInternational Conference on Neural Networks, 1995, 4, 1995.9. S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by Simulated An-nealing. Science, 220(4598):671, 1983.10. R. Perlman. An algorithm for distributed computation of a spanningtree in anextended lan. In Symposium on Data communications, SIGCOMM'85, pages 44�53. ACM, 1985.11. L.L. Peterson and B.S. Davie. Computer Networks: A Systems Approach, 3rdEdition. Morgan Kaufmann, 2007.12. P. Rabanal and I. Rodríguez. Testing restorable systems by using RFD. In Int.Work Conference on Arti�cial Neural Networks, IWANN'09. Springer, 2009.13. P. Rabanal, I. Rodríguez, and F. Rubio. Using river formation dynamics to designheuristic algorithms. In Unconventional Computation, UC'07, LNCS 4618, pages163�177. Springer, 2007.14. P. Rabanal, I. Rodríguez, and F. Rubio. Finding minimum spanning/distancestrees by using river formation dynamics. In Ant Colony Optimization and SwarmIntelligence, ANTS'08, LNCS 5217, pages 60�71. Springer, 2008.

15. P. Rabanal, I. Rodríguez, and F. Rubio. Applying river formation dynamics tosolve NP-complete problems. In R. Choing, editor, Nature-Inspired Algorithms forOptimisation, volume 193 of Studies in Computational Intelligence, pages 333�368.Springer, 2009.

Table 1: Summary of QIT results.Method Graph size % Qos % IE Best solution Arithmetic mean VarianceACO 100 0 100 582.62 618.26 552.36RFD 100 0 100 599.25 610.26 51.94ACO 100 25 75 603.93 643.31 756.17RFD 100 25 75 529.18 535.35 23.14ACO 100 50 50 509.98 541.67 315.68RFD 100 50 50 444.82 459.83 65.02ACO 100 75 25 409.84 421.30 86.43RFD 100 75 25 376.34 389.40 65.83ACO 100 100 0 285.90 305.79 93.57RFD 100 100 0 290.87 310.88 95.99ACO 200 0 100 771.64 933.20 5275.66RFD 200 0 100 854.78 884.05 111.41ACO 200 25 75 1270.38 1484.18 38149.49RFD 200 25 75 771.02 779.11 26.86ACO 200 50 50 1029.60 1189.63 8297.23RFD 200 50 50 689.18 698.19 41.72ACO 200 75 25 819.58 917.88 3025.96RFD 200 75 25 602.54 623.54 154.83ACO 200 100 0 542.32 577.54 365.01RFD 200 100 0 506.36 538.76 160.33ACO 300 0 100 1239.73 1414.31 8804.20RFD 300 0 100 1330.00 1362.05 244.50ACO 300 25 75 1592.38 1751.85 83816.83RFD 300 25 75 1140.84 1161.03 127.71ACO 300 50 50 1370.84 1512.30 19654.78RFD 300 50 50 1035.38 1053.18 124.00ACO 300 75 25 1132.21 1191.59 2145.74RFD 300 75 25 907.62 934.46 201.03ACO 300 100 0 1069.99 1128.73 641.79RFD 300 100 0 802.44 829.22 128.40

