M. Hidalgo-Herrero et al. / Comparing Problem Solving Seaies for NP-Hard Problems 1031

Appendix. NP-completeness and NP-complete problems undeonsidera-
tion

In this section we briefly introduce the notions of NP-hagieNP-completeness, apdlynomial re-
ductions which allows to prove the NP-hardness of a problem as wetkkging NP-hard problems
with each other. For the sake of briefness, some notiondwilhtuitively introduced. For a completely
formal description of these concepts, the reader can chgck2é, 10]. We also define the NP-complete
problems we have considered in our experiments.

A decision problem is a problem whose answer for each inpye$or not (e.g. is X a perfect
square? is there any hamiltonian cycle in graph G? Does amod halts?), and it implicitly defines a
set: the set of inputs whose answer for this probleryeis A decision problem is in class P if it can
be solved in a polynomial number of steps with respect to petisize (i.e. the size of X, G, and P
in previous examples) by @eterministic Turing MachinéDTM). A Deterministic Turing Machine is a
computation formalism based on a set of states and tramsjteotape of cells, and a tape head where, at
each step, depending on the current state and the symbea &@tth cell pointed by the head, we change
the symbol pointed by the head by another, the head is shifiectell to the right or to the left, and we
go to another state. In addition, for each configuratiortéstape, and head location), the next execution
step is uniquely determined. A DTM has the same computatpalaility as any modern programming
language (C++, Java, Haskell, Prolog, etc) under the agsomtpat the amount of available memory is
arbitrarily high. Solving a problem by a DTM may take diffatdimes as solving it by a Java program
(C++ program, etc). For instance, the time complexity of @bpm might be inD(n*) if it is solved
by a DTM and inO(n"/) with ¥’ < k if it is solved by a Java program. However, DTMs and Java
programs depict the sanfrder between problems requiring polynomial time and problengglirang
exponential time: A problem can be solved in polynomial tioyea DTM if and only if it can be so by a
Java program.

A decision problem is in class NP if it can be solved by Mon-Deterministic Turing Machine
(NDTM) in polynomial time. An NDTM is like a DTM though, at eadNDTM configuration, more than
one transition might be available to continue the executitthe NDTM can take these non-deterministic
choices in such a way that the execution eventually answesstiien the answer of the NDTM is yes,
else it is not. Alternatively, we can imagine a NDTM as a fdaftahachine where all possible non-
deterministic paths are run in parallel: We can do as mfamk operations as required and execute all
resulting processes in parallel in different processoesifave as many processors as processes), though
processes cannot communicate with each other (neither bgages nor by shared variables), but they
can just emit aranswer Again, the execution answer yesiff at least one of these processes sggs
Since we answeyesonly if there exists an execution path where we ansyesrwe may consider the
following alternative view of class NP: A decision problemim class NP if there exists a polynomial-
time deterministicTM such that, for each problem input, the DTM accepts (i.g/sy&sto) an string
consisting in the concatenation of the input amnepolynomial-size sequence of additional symbols
iff the answer of the problem for that inputygs This alternative definition of the NP class is linked
with the former one, mentioned earlier and based on a NDTNblksvs: If the input is accepted by the
NDTM then the sequence of additional symboils tells the daitdstic TM which execution path of the
NDTM reaches acceptance. Let us consider a decision pratifi¢ime form ‘Is there X such that P(X)?
(e.g. given a grapld, is there a patlp in G which is a hamiltonian cycle?). If we view each execution

1032 M. Hidalgo-Herrero et al. / Comparing Problem Solving Stgies for NP-Hard Problems

branch of a NDTM as a branch where a specific candidate solftiothe problem is checked (e.g., is
pathp a hamiltonian cycle inG?), then the sequence of additional symbols of the DTM remtssthe
candidate solution under consideration in the branch {#ha). So, the answer of the NDTM for some
input is yesiff there exists a sequence of additional symbols such tietanhswer of the DTM for the
concatenation of the input and the sequencgets

A decision problem A can beolynomially reduceéhto a decision problem B if there is a polynomial-
time functionf such that, for any instanc€ of problemA, the answer of problem A for this instance is
yesiff the answer of problem B for instancg X) is yes Intuitively, if A can be polynomially reduced
to B then, if there existed a polynomial-time solution of fgieam B, there would also exist a polynomial-
time solution for problem A: We could solve A by transformidg into f(X) (in polynomial time)
and next call B for instancg (X) (in polynomial time too). We say that a problem A is NP-hard if
any problem B in NP can be polynomially reduced to A; if A isaala NP then we say that A is NP-
complete. Cook proved that tigatisfiability problem, SAT (i.e. given a propositional logic formula
expressed in conjunctive normal form, is there any valmatibproposition symbols which makes the
formula true?) is NP-complete [9]. On the one hand, it is édasee that SAT isin NP: an NDTM could
non-deterministically explore all possible valuationpatynomial-time by opening an execution branch
for each possible valuation and check whether this valnatatisfies the formula. On the other hand,
the idea behind its NP-hardness is the following. Let B be@moplem in NP, that is, B is any problem
which can be solved by a polynomial-time NDTM. We may constral polynomial-size propositional
logic expression denoting, at each execution timeow the values of the configuration of such NDTM
(i.e. state, contents of all cells, and the head locatiopgdd on the corresponding values at time 1.
Since the NDTM solving B takes polynomial time, the numbetimies to be denoted in the formula is
polynomial too. Since only a polynomial number of cells canulsed in polynomial time, we infer that
the size of that formula is polynomial. If that formulésorequires that the NDTM ends at an accepting
state, then the resulting expression will be satisfiabltn@fNDTM (which solves B, i.eanyproblem in
NP) answers yes.

Given a problem C such that we do not know whether it is NP-loandot, we can prove its NP-
hardness as follows: We take any other problem B such thatRthardness has already been proved,
and we prove that B can be polynomially reduced to C. Sincgrabblem A in NP can be polynomially
reduced to B (as B is NP-hard), by the transitivity of polyriaineductions we have that A (which can
be any problem in NP) can be polynomially reduced to C, so C is NRttao. Thousands of NP-hard
problems have been identified by reducing previously-kndifrhard problems to them and so on, in
turn composing a tree of consecutive polynomial reductishigh actually departed from SAT.

Many computational problems are not decision problems, iteey do not consist in answering
yegno but in returning some non-boolean resulptimizationproblems are problems where we seek
for the value that maximizes/minimizes some function. Letillustrate this difference by formally
introducing both problems under consideration in this papést we consider theidecisionversions.
Knapsack (KN) is defined as follows: Given pairs of natur@ls w1), ..., (gn, w,) (Where each pair
(g9i, w;) denotes the i-th availablégem whosevalueis g; and whoseweightis w;), and two naturals
W (maximum weight capacity) anfl (required value), can we select some pairs (items) suchthbat
addition of their weights is not higher thdf and the addition of their values is not lower thaf
Besides, Vertex Cover (VC) is defined as follows: Given a {divacted) graphz and a naturalK,
can we selecf or lessvertexes ofG in such a way that all edges are connected to a node included in
the selection? Theptimizationversions of both problems are defined as expected: In Knkpgaen

M. Hidalgo-Herrero et al. / Comparing Problem Solving Seaies for NP-Hard Problems 1033

(g1,w1), ..., (gn,wy) and W, we have to select items in such a way that their addition bfesis
maximized but the addition of their weights is at mégt In Vertex Cover, given the graph, we have to
select a set of vertexes covering all edges in such a wayhtbatumber of selected vertexes is minimized.

Typically, the NP-hardness of an optimization problem igl&d in terms of its corresponding de-
cision problem. Note that, in general, solving the optirtia@a version of a problem implies trivially
solving its decision version. Let us suppose that we wisloteesthe decision version of Knapsack for
a given set of items, a given minimum vallleand a given maximum weight’. If we observe that the
optimalset of items which weights at moHt has valuéd/ with V' > L, then the answer of the decision
problem isyes else it isnot

However, NP-har@ptimizationproblems can, in turn, be classified into some interestihglagses.
For the sake of notation simplicity, let us suppose thatoigttion problems arminimizationproblems
(all the following notions are trivially adapted to the mimkzation case). We say that an optimization
problem is in APX if there exists a polynomial-time algoritande € R™ such that the algorithm
finds solutions whose cost in the worst case is ¢ times greater than the cost of optimal solutions. An
optimization problem is APX-hard if any optimization prebi in APX can bd°TAS reducetb it, where
a PTAS reduction is similar to the reduction between degigimblems mentioned before, though the
possibility to reach solutions with some approximationorét a problem must imply the possibility of
reaching solutions of some approximation ratio, dependimthe former ratio, in the other problem. An
APX-hard problem is also APX-complete if it also belongs X An optimization problem is in PTAS
if, for eache, there exists a polynomial-time algorithm whose approgiomaratio is1 + ¢ in the worst
case. Note that there must exist a polynomial-time algorithr eache, so the asymptotic complexity
of each algorithm could be different and unbounded witthlso note that no APX-hard problem is in
PTAS unless P=NP. Finally, an optimization problem is in RBTf, for eache, there exists an algorithm
running in polynomial-time with the input sizs well as with% whose approximation ratio is+ ¢ in
the worst case. Clearlyf PTAS C PTAS C APX. Moreover, if P £ N P, then both inclusions are
proper.

