
M. Hidalgo-Herrero et al. / Comparing Problem Solving Strategies for NP-Hard Problems 1031

Appendix. NP-completeness and NP-complete problems underconsidera-
tion

In this section we briefly introduce the notions of NP-hardness, NP-completeness, andpolynomial re-
ductions, which allows to prove the NP-hardness of a problem as well asrelating NP-hard problems
with each other. For the sake of briefness, some notions willbe intuitively introduced. For a completely
formal description of these concepts, the reader can check e.g. [26, 10]. We also define the NP-complete
problems we have considered in our experiments.

A decision problem is a problem whose answer for each input isyesor not (e.g. is X a perfect
square? is there any hamiltonian cycle in graph G? Does program P halts?), and it implicitly defines a
set: the set of inputs whose answer for this problem isyes. A decision problem is in class P if it can
be solved in a polynomial number of steps with respect to the input size (i.e. the size of X, G, and P
in previous examples) by aDeterministic Turing Machine(DTM). A Deterministic Turing Machine is a
computation formalism based on a set of states and transitions, a tape of cells, and a tape head where, at
each step, depending on the current state and the symbol at the tape cell pointed by the head, we change
the symbol pointed by the head by another, the head is shiftedone cell to the right or to the left, and we
go to another state. In addition, for each configuration (state, tape, and head location), the next execution
step is uniquely determined. A DTM has the same computation capability as any modern programming
language (C++, Java, Haskell, Prolog, etc) under the assumption that the amount of available memory is
arbitrarily high. Solving a problem by a DTM may take different times as solving it by a Java program
(C++ program, etc). For instance, the time complexity of a problem might be inO(nk) if it is solved
by a DTM and inO(nk

′

) with k′ < k if it is solved by a Java program. However, DTMs and Java
programs depict the sameborder between problems requiring polynomial time and problems requiring
exponential time: A problem can be solved in polynomial timeby a DTM if and only if it can be so by a
Java program.

A decision problem is in class NP if it can be solved by anNon-Deterministic Turing Machine
(NDTM) in polynomial time. An NDTM is like a DTM though, at each NDTM configuration, more than
one transition might be available to continue the execution. If the NDTM can take these non-deterministic
choices in such a way that the execution eventually answers yes, then the answer of the NDTM is yes,
else it is not. Alternatively, we can imagine a NDTM as a parallel machine where all possible non-
deterministic paths are run in parallel: We can do as manyfork operations as required and execute all
resulting processes in parallel in different processors (we have as many processors as processes), though
processes cannot communicate with each other (neither by messages nor by shared variables), but they
can just emit ananswer: Again, the execution answer isyesiff at least one of these processes saysyes.
Since we answeryesonly if there exists an execution path where we answeryes, we may consider the
following alternative view of class NP: A decision problem is in class NP if there exists a polynomial-
time deterministicTM such that, for each problem input, the DTM accepts (i.e. says yesto) an string
consisting in the concatenation of the input andsomepolynomial-size sequence of additional symbols
iff the answer of the problem for that input isyes. This alternative definition of the NP class is linked
with the former one, mentioned earlier and based on a NDTM, asfollows: If the input is accepted by the
NDTM then the sequence of additional symbols tells the deterministic TM whichexecution path of the
NDTM reaches acceptance. Let us consider a decision problemof the form “Is there X such that P(X)?”
(e.g. given a graphG, is there a pathp in G which is a hamiltonian cycle?). If we view each execution



1032 M. Hidalgo-Herrero et al. / Comparing Problem Solving Strategies for NP-Hard Problems

branch of a NDTM as a branch where a specific candidate solution for the problem is checked (e.g., is
pathp a hamiltonian cycle inG?), then the sequence of additional symbols of the DTM represents the
candidate solution under consideration in the branch (thatis, p). So, the answer of the NDTM for some
input is yesiff there exists a sequence of additional symbols such that the answer of the DTM for the
concatenation of the input and the sequence isyes.

A decision problem A can bepolynomially reducedinto a decision problem B if there is a polynomial-
time functionf such that, for any instanceX of problemA, the answer of problem A for this instance is
yesiff the answer of problem B for instancef(X) is yes. Intuitively, if A can be polynomially reduced
to B then, if there existed a polynomial-time solution of problem B, there would also exist a polynomial-
time solution for problem A: We could solve A by transformingX into f(X) (in polynomial time)
and next call B for instancef(X) (in polynomial time too). We say that a problem A is NP-hard if
any problem B in NP can be polynomially reduced to A; if A is also in NP then we say that A is NP-
complete. Cook proved that theSatisfiabilityproblem, SAT (i.e. given a propositional logic formula
expressed in conjunctive normal form, is there any valuation of proposition symbols which makes the
formula true?) is NP-complete [9]. On the one hand, it is easyto see that SAT is in NP: an NDTM could
non-deterministically explore all possible valuations inpolynomial-time by opening an execution branch
for each possible valuation and check whether this valuation satisfies the formula. On the other hand,
the idea behind its NP-hardness is the following. Let B be anyproblem in NP, that is, B is any problem
which can be solved by a polynomial-time NDTM. We may construct a polynomial-size propositional
logic expression denoting, at each execution timet, how the values of the configuration of such NDTM
(i.e. state, contents of all cells, and the head location) depend on the corresponding values at timet− 1.
Since the NDTM solving B takes polynomial time, the number oftimes to be denoted in the formula is
polynomial too. Since only a polynomial number of cells can be used in polynomial time, we infer that
the size of that formula is polynomial. If that formulaalso requires that the NDTM ends at an accepting
state, then the resulting expression will be satisfiable iffthe NDTM (which solves B, i.e.anyproblem in
NP) answers yes.

Given a problem C such that we do not know whether it is NP-hardor not, we can prove its NP-
hardness as follows: We take any other problem B such that itsNP-hardness has already been proved,
and we prove that B can be polynomially reduced to C. Since allproblem A in NP can be polynomially
reduced to B (as B is NP-hard), by the transitivity of polynomial reductions we have that A (which can
beanyproblem in NP) can be polynomially reduced to C, so C is NP-hard too. Thousands of NP-hard
problems have been identified by reducing previously-knownNP-hard problems to them and so on, in
turn composing a tree of consecutive polynomial reductionswhich actually departed from SAT.

Many computational problems are not decision problems, i.e. they do not consist in answering
yes/no but in returning some non-boolean result.Optimizationproblems are problems where we seek
for the value that maximizes/minimizes some function. Let us illustrate this difference by formally
introducing both problems under consideration in this paper. First we consider theirdecisionversions.
Knapsack (KN) is defined as follows: Given pairs of naturals(g1, w1), . . . , (gn, wn) (where each pair
(gi, wi) denotes the i-th availableitem, whosevalue is gi and whoseweight is wi), and two naturals
W (maximum weight capacity) andL (required value), can we select some pairs (items) such thatthe
addition of their weights is not higher thanW and the addition of their values is not lower thanL?
Besides, Vertex Cover (VC) is defined as follows: Given a (non-directed) graphG and a naturalK,
can we selectK or lessvertexes ofG in such a way that all edges are connected to a node included in
the selection? Theoptimizationversions of both problems are defined as expected: In Knapsack, given



M. Hidalgo-Herrero et al. / Comparing Problem Solving Strategies for NP-Hard Problems 1033

(g1, w1), . . . , (gn, wn) andW , we have to select items in such a way that their addition of values is
maximized but the addition of their weights is at mostW . In Vertex Cover, given the graph, we have to
select a set of vertexes covering all edges in such a way that the number of selected vertexes is minimized.

Typically, the NP-hardness of an optimization problem is studied in terms of its corresponding de-
cision problem. Note that, in general, solving the optimization version of a problem implies trivially
solving its decision version. Let us suppose that we wish to solve the decision version of Knapsack for
a given set of items, a given minimum valueL, and a given maximum weightW . If we observe that the
optimalset of items which weights at mostW has valueV with V ≥ L, then the answer of the decision
problem isyes, else it isnot.

However, NP-hardoptimizationproblems can, in turn, be classified into some interesting subclasses.
For the sake of notation simplicity, let us suppose that optimization problems areminimizationproblems
(all the following notions are trivially adapted to the maximization case). We say that an optimization
problem is in APX if there exists a polynomial-time algorithm andǫ ∈ R

+ such that the algorithm
finds solutions whose cost in the worst case is1 + ǫ times greater than the cost of optimal solutions. An
optimization problem is APX-hard if any optimization problem in APX can bePTAS reducedto it, where
a PTAS reduction is similar to the reduction between decision problems mentioned before, though the
possibility to reach solutions with some approximation ratio in a problem must imply the possibility of
reaching solutions of some approximation ratio, dependingon the former ratio, in the other problem. An
APX-hard problem is also APX-complete if it also belongs to APX. An optimization problem is in PTAS
if, for eachǫ, there exists a polynomial-time algorithm whose approximation ratio is1 + ǫ in the worst
case. Note that there must exist a polynomial-time algorithm for eachǫ, so the asymptotic complexity
of each algorithm could be different and unbounded withǫ. Also note that no APX-hard problem is in
PTAS unless P=NP. Finally, an optimization problem is in FPTAS if, for eachǫ, there exists an algorithm
running in polynomial-time with the input sizeas well as with1

ǫ
whose approximation ratio is1 + ǫ in

the worst case. Clearly,FPTAS ⊆ PTAS ⊆ APX. Moreover, ifP 6= NP , then both inclusions are
proper.


